

JOURNAL OF COMPUTATIONAL PHYSICS146,203–226 (1998)
ARTICLE NO. CP986064

Computation of a Few Small Eigenvalues
of a Large Matrix with Application

to Liquid Crystal Modeling

J. Baglama,∗,1 D. Calvetti,†,2 L. Reichel,‡,3 and A. Ruttan‡,4
∗Department of Mathematics, Texas Tech University, Lubbock, Texas 79409;†Department of Mathematics,

Case Western Reserve University, Cleveland, Ohio 44106;‡Department of Mathematics
and Computer Science, Kent State University, Kent, Ohio 44242

Received January 28, 1997; revised March 13, 1998

Equilibrium configurations of liquid crystals in a finite containment are minimizers
of the thermodynamic free energy of the system. It is important to be able to track an
equilibrium configuration as the temperature of the liquid crystals is decreased. The
path of the minimal energy configuration at a bifurcation point can be computed from
the null space of a sparse symmetric matrix, which typically is very large, e.g., of
order 3×105. We describe an implicitly restarted block Lanczos method designed for
the computation of a few extreme multiple or close eigenvalues and associated eigen-
vectors of a large sparse symmetric matrix and apply this method to determine the
desired null space. Our method generalizes the implicitly restarted Lanczos method
introduced by Sorensen. The method requires that certain acceleration parameters,
referred to as shifts, be chosen. The storage requirement depends on the choice of
shifts. We propose a new strategy for choosing shifts. Numerical examples illustrate
that the implicitly restarted block Lanczos method with shifts chosen in this manner
gives rapid convergence, reliably detects extreme multiple or close eigenvalues, and
requires little computer storage in addition to the storage used for the desired eigen-
vectors. These features make the method well suited for the application of tracking
an equilibrium configuration of liquid crystals. c© 1998 Academic Press

Key Words:bifurcation; block Lanczos method; continuation method; equilibrium
configuration; polynomial acceleration.

1 E-mail: baglama@math.ttu.edu. Research supported in part by NSF Grant F377 DMR-8920147 ALCOM.
2 E-mail: dxc57@po.cwru.edu. Research supported in part by NSF Grant DMS-9404692.
3 E-mail: reichel@mcs.kent.edu. Research supported in part by NSF Grants DMS-9404706 and ASC-9720221.
4 E-mail: ruttan@mcs.kent.edu. Research supported in part by NSF Grants F377 DMR-8920147 ALCOM and

ASC-9720221.

203

0021-9991/98 $25.00
Copyright c© 1998 by Academic Press

All rights of reproduction in any form reserved.

204 BAGLAMA ET AL.

1. INTRODUCTION

The computation of an equilibrium configuration of liquid crystals and the tracking of
such a configuration as the temperature of the liquid crystals decreases are computationally
challenging problems. Tracking of the equilibrium configuration requires the determination
of a few, sayk, of the smallest eigenvalues and associated eigenvectors of a large sparse
symmetric matrixA∈ Rn×n, wheren can be as large as 3× 105 andk typically is 4. Some
of the desired eigenvalues can be of multiplicity larger than one, or distinct and very close.
It is the purpose of the present paper to describe a new method for computing the desired
eigenvalue–eigenvector pairs.

We begin with a description of the liquid crystals problem. The problem under consider-
ation is to determine the minimum energy equilibrium configuration of liquid crystals in a
slab

Ä = {(x1, x2, x3) : 0 ≤ x1 ≤ a, 0 ≤ x2 ≤ b, 0 ≤ x3 ≤ c} (1.1)

with surface∂Ä. Using the Landau–de Gennes formulation, the free energy can be expressed
in terms of a tensor order parameter fieldQ; see Priestlyet al. [27]. The free energy is given
by

F(Q, T) = Fvol(Q, T) + Fsurf(Q) =
∫

Ä

fvol(Q, T) dV +
∫

∂Ä

fsurf(Q) dS, (1.2)

whereQ = Q(p), p∈ Ä, is a 3× 3 symmetric traceless tensor, which is represented by

Q(p) = q1(p)

1 0 0

0 0 0

0 0 −1

+ q2(p)

0 1 0

1 0 0

0 0 0

+ q3(p)

0 0 1

0 0 0

1 0 0



+ q4(p)

0 0 0

0 1 0

0 0 −1

+ q5(p)

0 0 0

0 0 1

0 1 0

 (1.3)

and theqi are real-valued functions onÄ. Theqi are to be determined so that the free energy
(1.2) is minimal. The representation

fvol(Q, T) = 1

2
L1Qαβ,γ Qαβ,γ + 1

2
L2Qαβ,β Qαγ,γ + 1

2
L3Qαβ,γ Qαγ,β

+ 1

2
A trace(Q2) − 1

3
B trace(Q3) + 1

4
C trace(Q2)2 (1.4)

uses the conventions that summation over repeated indices is implied and indices separated
by commas represent partial derivatives. For example,

Qαβ,γ Qαγ,β =
3∑

α=1

3∑
β=1

3∑
γ=1

∂Q[α, β]

∂xγ

· ∂Q[α, γ]

∂xβ

.

The bulk parameterA is assumed to be of the formA=A0(T − T0), whereA0 andT0

are constants andT is the normalized temperature of the liquid crystals. In this paper we

COMPUTATIONS IN LIQUID CRYSTAL MODELING 205

takeT0 = 0 andA0 = 2, which givesT = 1
2A. The quantitiesL1,L2, andL3 are elastic

constants, andB andC are bulk constants. Moreover,

fsurf(Q) =W trace
(
(Q − Q0)

2
)
, (1.5)

whereW is a constant and the tensorQ0 is determined by the boundary conditions for
the functionsqi . We consider two kinds of boundary conditions which model strong and
weak anchoring of the liquid crystals on the surface∂Ä, respectively. Strong anchoring is
obtained by imposing the condition

Q(p) = Q0(p), p∈ ∂Ä. (1.6)

This has the effect that

Fsurf(Q) =
∫

∂Ä

fsurf(Q) dS= 0. (1.7)

Weak anchoring of the liquid crystal molecules on the boundary is obtained by setting the
constantW in (1.5) to a finite value. Details can be found in [9, 12, 27, 35].

The minimum energy equilibrium configuration of the liquid crystals is determined by
solving the Euler–Lagrange equations associated with (1.2). These equations yield a bound-
ary value problem for a system of nonlinear partial differential equations for theqi . Dis-
cretization by finite differences gives rise to a system of nonlinear equations of large order
which we represent as

G(Q, T) = 0. (1.8)

We solve this system by Newton’s method. Each iteration by Newton’s method requires the
solution of a linear system of equations with the matrix of partial derivativesGQ(Q, T)

obtained by the discretized Euler–Lagrange equations. We are interested in tracking the
minimal energy equilibrium configuration as the temperatureT of the liquid crystals is
varied. This gives rise to a path-following problem, which we solve by using the Euler–
Newton continuation method; see, e.g., [1, 17] for discussions on continuation methods.
Points on the solution path at whichGQ(Q, T) is singular are referred to as singular points.
We are interested in determining these points because they may be bifurcation points for the
minimal energy equilibrium configuration. When the continuation method finds a point on a
solution path close to a singular point, we use the secant method to accurately determine the
location of the singular point. Thus, we use the secant method to determine a temperature
T0 such that the minimum eigenvalueλ1(T0) of GQ(Q, T0) vanishes. This is described in
the following algorithm.

ALGORITHM 1.1. Computation of a singular point.
Input: λ

(0)
1 , T (0), T (1), tol; Output:T0, λ1(T0);

1. j := 1;
2. Minimize F(Q, T (j));
3. Compute the smallest eigenvalueλ

(j)
1 of the matrix GQ(Q, T (j));

4. if |λ(j)
1 | ≤ tol thenT0 := T (j); λ1(T0) := λ

(j)
1 ; exit endif;

5. T (j +1) :=T (j) − λ
(j)
1
T (j) − T (j −1)

λ
(j)
1 − λ

(j −1)

1

; j := j + 1;
6. go to 2.

206 BAGLAMA ET AL.

We use Algorithm 4.1 of Section 4 to compute the smallest eigenvalue of the matrix
of partial derivatives in step 3 of Algorithm 1.1. At the singular point the solution path
might bifurcate. One technique for switching paths at bifurcation points is to determine the
tangent vectors to the different branches of the solution path by solving a nonlinear system
of polynomial equations of small order. Specifically, one solves thealgebraic bifurcation
equationswhen the partial derivativeGT (Q, T) at T = T0 is in the range ofGQ(Q, T0),
and thelimit point bifurcation equationsotherwise; see, e.g., [16, 17] and references therein
for further discussions. We can follow the desired solution path from a bifurcation point by
taking a Newton step in the direction of an appropriate tangent vector.

The eigenvectors associated with the zero eigenvalues of the matrixGQ(Q, T0) are
required in the algebraic bifurcation equations for computing the tangent vectors of the
solution path at a bifurcation point. Therefore it is necessary to determine the location of
singular points and to compute the null space ofGQ(Q, T0) at these points. In the application
to liquid crystal modeling described in this paper, we also need to compute the dimension
of the null space ofGQ(Q, T0) at a singular point. Due to symmetry this dimension is
frequently a multiple of three. In view of the large order ofGQ(Q, T0) in our application,
it is highly desirable that the numerical method used for computing the wanted eigenvalues
and eigenvectors requires little computer storage in addition to the storage needed for the
computed eigenvectors. In fact, in order to reduce the storage requirement, we do not store
all nonzero entries ofGQ(Q, T0) simultaneously, but instead calculate them as needed when
evaluating matrix–vector products withGQ(Q, T0). The FORTRAN code for evaluating
these matrix–vector products was generated by the symbolic formula manipulation language
Maple V.

This paper describes the implicitly restarted block Lanczos (IRBL) method for the com-
putation of a few extreme eigenvalues of a large sparse symmetric matrix and applies the
method to the computation of a few of the smallest eigenvalues and associated eigenvectors
of the matrixGQ(Q, T) introduced above. We denote the block size byr and sometimes
refer to our block scheme as the IRBL(r) method. This method generalizes the implicitly
restarted Lanczos (IRL) method introduced by Sorensen [33] and more recently studied by
Lehoucq and Sorensen [18, 20]. The IRBL method is based on the recursions formula for
the block Lanczos method, described, e.g., by Chatelin [7], Golub and Underwood [14],
Grimeset al. [15], and Ruhe [29]. Similarly to the block Lanczos method, the IRBL method
is well suited for the computation of multiple or very close eigenvalues. The main advantage
of the IRBL method, when compared with the block Lanczos method, is its smaller storage
requirement when both eigenvalues and associated eigenvectors are required.

The IRBL method can be regarded as a curtailed block QR algorithm for the symmetric
eigenvalue problem; see, e.g., Bai and Demmel [4], and Dubrulle and Golub [10] for discus-
sions of the latter. Similarly as in the block QR algorithm, the choice of shifts is important
for the IRBL method. However, obvious generalizations of the Rayleigh or Wilkinson shifts
that can be used in a block QR algorithm cannot be applied in the IRBL method, because
the data required to compute these shifts is not available. We therefore propose a new shift
selection strategy.

We remark that shift selection in the IRL method, and the closely related implicitly
restarted Arnoldi (IRA) method, has received considerable attention and is studied in
[3, 6, 20, 23, 33]. ARPACK by Lehoucqet al. [21] implements the IRL and IRA meth-
ods as described by Sorensen [33]. Computed examples in Section 5 illustrate that this
implementation of the IRL method does not reliably detect multiple eigenvalues; neither

COMPUTATIONS IN LIQUID CRYSTAL MODELING 207

does the IRL method described in [3]. A large number of numerical experiments, some
of which are reported in Section 5, indicate that the IRBL method of the present paper
reliably determines extreme eigenvalues with correct multiplicity and the associated eigen-
vectors. When the block size is chosen to be one, the IRBL method reduces to the IRBL(1)
method, which is an IRL method. In our experience the IRBL(1) method also reliably deter-
mines extreme eigenvalues with correct multiplicity. The IRBL(1) method differs from the
previously described IRL methods in the selection of Krylov subspace after an eigenvalue–
eigenvector pair has been found and in the choice of shifts. The main advantage of the
IRBL(1) method over the IRBL(r) methods forr > 1 is that it requires less computer stor-
age. However, the IRBL(1) method may require more arithmetic operations to determine
the desired eigenvalue–eigenvector pairs. This is illustrated in Section 5.

For any block sizer ≥ 1, the IRBL(r) method is a polynomial acceleration method with a
special choice of accelerating polynomial. Polynomial acceleration for eigenvalue compu-
tation was first used by Flanders and Shortley [13], who applied Chebyshev polynomials.
More recent applications of Chebyshev polynomials as accelerating polynomials are de-
scribed by Chatelin [7] and Saad [30].

We note that when a suitable preconditioner forA is known, the Davidson method
and extensions thereof can be competitive for the computation of a few eigenvalues; see
Davidson [8], Morgan and Scott [24], Murrayet al. [25], and Sleijpen and van der Vorst
[32]. The determination of a suitable preconditioner for the liquid crystal problem that we
focus on in this paper requires further study, and we therefore only consider methods that
just require the matrixA.

This paper is organized as follows. In Section 2 we review the block Lanczos method and
develop the recursion formulas for the IRBL method. Section 3 describes our strategies for
subspace and shift selections, and Section 4 presents our new IRBL algorithm. Numerical
examples are displayed in Section 5, and concluding remarks can be found in Section 6.

2. THE IRBL METHOD

Let {v j }r
j =1 be a given set of orthonomaln-vectors, and introduce the matrixVr = [v1,

v2, . . . , vr]. An application ofm steps of the block Lanczos method with initial matrixVr

reduces then × n symmetric matrixA to a symmetric block tridiagonal matrixTmr with
r × r blocks and upper triangular subdiagonal blocks, such that

AVmr = VmrTmr + Fr ET
r , (2.1)

whereVmr ∈ Rn×mr, Vmr Imr×r = Vr , VT
mrVmr = Imr, andFr ∈ Rn×r satisfiesVT

mr Fr = 0. As
usual Imr denotes themr × mr identity matrix, andImr×r ∈ Rmr×r consists of the firstr
columns of Imr. The matrixEr ∈ Rmr×r consists of the lastr columns of Imr. We refer
to (2.1) as a block Lanczos decomposition, and the spaceKmr := rangeVmr as a Krylov
subspace.

Let θ be an eigenvalue of the matrixTmr, and lety be an associated eigenvector. Thenθ

is an approximate eigenvalue ofA and is commonly referred to as a Ritz value ofA. The
vectorx = Vmr y is an approximate eigenvector ofA and is referred to as a Ritz vector of
A. It follows from (2.1) that the residual errorAx− xθ associated with the Ritz pair{θ, x}
satisfies

‖Ax − xθ‖ = ‖(AVmr − VmrTmr)y‖ = ∥∥Fr ET
r y

∥∥. (2.2)

208 BAGLAMA ET AL.

Throughout this paper‖·‖ denotes the Euclidean vector norm as well as the associated
induced matrix norm. Thus, the norm of the residual error can be determined without
explicitly computing the Ritz vectorx by evaluating the right-hand side of (2.2). When
the norm (2.2) is small, the Ritz valueθ is an accurate approximation of an eigenvalue
of A. The determination of how wellx approximates an eigenvector ofA requires further
spectral information ofA. In the basic block Lanczos method, one fixes the block sizer
and increasesm until the right-hand side of (2.2) is sufficiently small. Then one computes
the Ritz pair{θ, x}. When the order of the matrixA and the number of Lanczos stepsm are
large, secondary computer storage may have to be used to storeVmr. This can slow down
the computations significantly. The use of secondary computer storage can be avoided by
restarting the block Lanczos process periodically, and the IRBL method provides recursion
formulas for this purpose.

The IRBL method generalizes the IRL method by Sorensen [33]. Assume for definiteness
that we are interested in computing thek smallest eigenvalues and associated eigenvectors
of the matrixA, wherek is a fixed and fairly small number. Letmsteps of the block Lanczos
method produce the block Lanczos decomposition (2.1).

Let z∈ R and determine the QR factorizationTmr − z Imr = QR, whereQ, R∈ Rmr × mr,

QT Q = Imr, andR is upper triangular. We obtain

(A − z I)Vmr − Vmr(Tmr − z Imr) = Fr ET
r , (2.3.1)

(A − z I)Vmr − VmrQR= Fr ET
r , (2.3.2)

(A − z I)(Vmr Q) − (Vmr Q)(RQ) = Fr ET
r Q, (2.3.3)

A(Vmr Q) − (Vmr Q)(RQ+ z Imr) = Fr ET
r Q. (2.3.4)

Let T+
mr = RQ+ z Imr. ThenT+

mr is a symmetric block tridiagonal matrix with the same band
width asTmr. The matrixQ in the QR factorization ofTmr − z Imr is a generalized upper
Hessenberg matrix, whose lower triangular part has band widthr .

The formulas (2.3) are similar to recursion formulas for the explicitly shifted block QR
method, and in analogy with the terminology for the latter method, we refer toz as a shift.
After applying them− 1 shiftsz1, z2, . . . , zm−1, we obtain

AV+
mr = V+

mrT
+
mr + Fr ET

r Q+, (2.4)

where

V+
mr = [v+

1 , v+
2 , . . . , v+

mr] = Vmr Q
+, Q+ = Q1Q2 · · · Qm−1, T+

mr = (Q+)T Tmr Q
+

andQj denotes the orthogonal matrix associated with the shiftzj . Introduce the partitioning

T+
mr =



T+
r BT

r 0 · · · 0

Br

0
... T+

mr−r

0


, (2.5)

COMPUTATIONS IN LIQUID CRYSTAL MODELING 209

whereT+
r ∈ Rr ×r , Br ∈ Rr ×r is upper triangular, andT+

mr−r ∈ R(mr−r)×(mr−r). Equate the
first r columns on the right-hand side and left-hand side of (2.4). We then obtain

AV+
r = V+

r T+
r + F+

r , (2.6)

whereV+
r = [v+

1 , v+
2 , . . . , v+

r] andF+
r = [v+

r +1, . . . , v
+
2r]Br + Fr ET

r Q+ In×r . Themth shift
zm is applied according to

V++
r = F+

r + V+
r (T+

r − zmIr). (2.7)

IntroduceR̂= (Rr
mRr

m−1 . . . Rr
1)

−1, whereRr
j is the firstr columns andr rows of the upper

triangular matrixRj in the QR factorization ofTmr − zj I . Then

V++
r = ψm(A)Vr R̂, (2.8)

whereψm is a polynomial of degreem with zerosz1, z2, . . . , zm. Formula (2.8) shows that
we can multiply the initial matrixVr for the Lanczos method by an accelerating polynomial
in A of degreem without evaluating any matrix-vector products with the matrixA, in
addition to those matrix–vector products that were computed duringm steps of the block
Lanczos method. The choice of accelerating polynomialψm, i.e., the choice of the shifts
z1, z2, . . . , zm, is discussed in Section 3. Here we only note that we wish to choose thezj so
that rangeV++

r is in, or close to, an invariant subspace ofA associated with all or a subset
of thek desired eigenvalues ofA.

Having computedV++
r in the manner outlined, we orthonormalize the columns ofV++

r

and denote the orthonormal matrix so obtained byVr . The block Lanczos process is now
restarted with the initial matrixVr . If the number of desired eigenvaluesk is not larger than
the block sizer , then the computations proceed by periodically applyingm steps of the
block Lanczos process andm shifts until the desiredk eigenvalue–eigenvector pairs have
been found. After having appliedm shiftsq times, the relation (2.8) is replaced by

Ṽ++
r = ψmq(A)Vr R̃, (2.9)

whereψmq is a polynomial of degreemq with zerosz1, z2, . . . , zmq, andR̃ is an upper
triangular matrix.

In view of that the eigenvalues of a block tridiagonal matrixTmr ∈ Rmr×mr with block
sizer and of rank larger than or equal tomr − r are of multiplicity less than or equal to
r , see, e.g., [7, Lemma 6.41, p. 268], the block Lanczos method with block sizer can
determine eigenvalues of multiplicity at mostr . If k > r , we therefore proceed as follows
in order to be able to compute all thek smallest eigenvalues and associated eigenvectors.
We carry out the computations as described above untilr desired eigenvalue–eigenvector
pairs have been found. We then generater random vectors, orthogonalize them against the
orthogonal eigenvectors already computed, as well as against each other, by the modified
Gram–Schmidt method. This gives the matrixVr = [v1, v2, . . . , vr], which we use to restart
the block Lanczos method. This selection of matrixVr afterr eigenvalues have converged
makes it possible to determine eigenvalues of multiplicity larger thanr and associated
eigenvectors. We also use this choice of starting vector for the Lanczos process when
r = 1.

210 BAGLAMA ET AL.

We remark that whenr = 1 the selection of initial vector for the Lanczos method differs
from the choice of initial vector proposed in [3]. The choice advocated in [3] typically yields
faster convergence tok small eigenvalues and associated eigenvectors; however, when there
are multiple or very close eigenvalues the eigenvalues found are not always thek smallest
ones. The initial vector should be selected as proposed in the present paper when it is
important that the computed eigenvalues are the very smallest ones.

The computations in our present implementation of the block Lanczos method are orga-
nized as proposed by Ruhe [29]. In this implementation the vectors in the Krylov subspace
bases generated are orthogonalized sequentially. Orthogonality of the basis vectors is se-
cured by reorthogonalization when necessary. Results in [5, 28] show that at most one
reorthogonalization is required.

We note that on some computers and for certain matricesA, it may be possible to si-
multaneously evaluater matrix–vector products with the matrixA faster than to evaluater
matrix–vector products withA sequentially. This depends on whether simultaneous evalu-
ation may require less data movement. For such computers and matrices, it can be attractive
to consider variants of the block Lanczos method that allow simultaneous evaluation of
r matrix–vector products. It is straightforward to modify our code for the IRBL method
accordingly.

The recurrence formulas (2.3) are related to the explicitly shifted block QR algorithm.
However, for reasons of numerical stability, we use an implementation based on recurrence
formulas associated with an implicitly shifted block QR algorithm. These recursions can
be modified to allow double shifts. The latter is attractive whenA is a general real matrix.
A code for a restarted block Arnoldi method for the computation of a few eigenvalues and
associated eigenvectors of a general real matrixA is presently being developed by Lehoucq
and Maschhoff [19].

Assume that we already have determinedjr < k eigenvalue–eigenvector pairs, and are
to apply the block Lanczos method to the matrixVr ∈ Rn×r with orthonormal columns.
The eigenvectors already found requirenjr storage locations. In order not to increase the
demand of computer storage, we only applym− j steps of the block Lanczos algorithm,
which are followed bym− j shifts.

3. SHIFT SELECTION

The rate of convergence of the IRBL method depends on the choice of accelerating
polynomialψmq in (2.9). We determineψmq by prescribing its zeros. The description of
our selection of zeros requires some notation. LetK be a closed and bounded interval on
the real axis, and letw(z) be a nonnegative continuous function onK . We refer tow(z) as
a weight function. Define a sequence{zj }∞j =1 of points inK as follows. Letz1 be a point
such that

w(z1)|z1| = max
z∈K

w(z)|z|, z1 ∈ K , (3.1)

and letzj , for j = 2, 3, . . ., satisfy

w(zj)

j −1∏
l=1

|zj − zl | = max
z∈K

w(z)
j −1∏
l=1

|z − zl |, zj ∈ K . (3.2)

The pointszj determined by (3.1)–(3.2) might not be unique. We call any sequence of points

COMPUTATIONS IN LIQUID CRYSTAL MODELING 211

{zj }∞j =1 that satisfies (3.1)–(3.2) a sequence of weighted Leja points forK , or sometimes
briefly Leja points forK . Whenw(z) = 1, the weighted Leja points agree with the “classical”
Leja points studied by Leja [22].

We choose the zeros ofψmq to be Leja points for certain intervalsK that do not contain
any of the desiredk smallest eigenvalues ofA. Because we use these zeros as shifts in our
algorithm, we also refer to them as Leja shifts. The purpose of the Leja shifts is to dampen
eigenvector components associated with undesired eigenvalues in the columns of the matrix
Vr in (2.9).

We now describe how intervalsK that do not contain any of thek smallest eigenvalues
of A can be determined from the eigenvalues of the matricesTmr generated by the IRBL
method. We may assume that the subdiagonalr × r blocks of the block tridiagonal matrix
Tmr defined by (2.1) are nonsingular, which implies that rank(Tmr) ≥ rm − r , because oth-
erwise we have found an invariant subspace.

PROPOSITION3.1. Let

λ1 ≤ λ2 ≤ · · · ≤ λn (3.3)

denote the eigenvalues of A, and let

θ1 ≤ θ2 ≤ · · · ≤ θmr (3.4)

be the eigenvalues of the symmetric block tridiagonal matrix Tmr, with nonsingular subdi-
agonal r× r blocks, in a block Lanczos decomposition(2.1). Then

λ j ≤ θ j , 1 ≤ j ≤ mr, (3.5)

λn ≥ θmr. (3.6)

Moreover,

λ j < θ j +r , 1 ≤ j ≤ (m − 1)r. (3.7)

Proof. We obtain from (2.1) thatTmr = VT
mr AVmr and, therefore,

λk = max
S,dim(S)=k

min
x∈S
x 6=0

xT Ax

xTx
≤ max

S,dim(S)=k
min

x∈S∩span{Vmr}
x 6=0

xT Ax

xTx
= max

S,dim(S)=k
min
y∈S
y6=0

yTTmr y

yTy
= θk.

This shows (3.5). The inequality (3.6) can be shown similarly. Finally, (3.7) follows from
the fact that the eigenvalues ofTmr have multiplicity at mostr . j

Assume that(m− 1)r ≥ k and let the integerp satisfy

0 ≤ p ≤ (m − 1)r − k. (3.8)

Then, by (3.7), the intervalK = [θk+r +p, θmr] does not contain any of thek smallest eigenval-
ues of the matrixA. This suggests the following choice of intervalsK during the computation
with the IRBL method. For now, we letp be an arbitrary integer that satisfies (3.8). We
discuss different choices ofp at the end of this section.

212 BAGLAMA ET AL.

Let Vr ∈ Rn×r be the initial matrix with orthonormal columns for the block Lanczos
method, compute the decomposition (2.1), determine the eigenvaluesθ j of the matrixTmr

in (2.1), and order them according to (3.4). Define the endpoints of the intervalK = [a, b]
by

a = θk+r +p, b = θmr. (3.9)

We let themfirst shifts{zj }m
j =1 be Leja points forK . Application of themshifts as described

in Section 2 yields a new matrixV++
r ∈ Rn×r defined by (2.7). We orthonormalize its

columns and this gives a new matrix, which we also refer to asVr . We now applym steps
of the block Lanczos method with initial matrixVr in order to obtain a new block Lanczos
decomposition (2.1), with a new block tridiagonal matrixTmr. Compute its eigenvaluesθ j

and order them according to (3.4). The endpoints ofK = [a, b] are updated by the formulas

a = θk+r +p, b = max{b, θmr}. (3.10)

We then selectm shiftszm+1, zm+2, . . . , z2m as Leja points for this new intervalK = [a, b]
in the presence of the pointsz1, z2, . . . , zm. More precisely, assume that we already have
determined the points{zj }m(q−1)

j =1 . The next set ofm points{zj }mq
j =(m−1)q+1 then is defined

by the following algorithm. The weight function in the algorithm is chosen to be

w(z) = |z − θk+r +p|, (3.11)

wherep satisfies (3.8).

ALGORITHM 3.2. Computem shifts as Leja points forK , givenm(q − 1) shifts.
Input: endpoints ofK , q, m,{zj }m(q−1)

j =1 ; Output:{zj }mq
j =m(q−1)+1;

1. j := m(q − 1) + 1;
2. if j = 1 then

z0 := point of largest magnitude ofK
else

Determine zj ∈ K , such that

w(zj)

j −1∏
i =1

|zj − zi | = max
z∈K

w(z)
j −1∏
i =1

|z − zi |,
wherew(z) is defined by (3.11)

endif;
3. j := j + 1;
4. if j < mq then go to 2 else stop.

The computation of the Leja pointszj , j ≥ 1, by Algorithm 3.2 requires the maximization
of a product overK . In order to reduce the computational effort necessary to determine Leja
points, we discretize each updated intervalK using zeros of a Chebyshev polynomial of the
first kind of degreè for the intervalK , where` is sufficiently large.

We turn to the selection of integerp in (3.9)–(3.11). In [3] we described an algorithm
that corresponds to the case whenr = 1 and considered eigenvalue problems in which the
desired eigenvalues were fairly well separated from the undesired ones. We foundp= 0
to be appropriate. This corresponds toa = θk+1 in (3.9)–(3.10). However, when the largest
desired eigenvalues ofA are close to the smallest undesired eigenvalues ofA andm is

COMPUTATIONS IN LIQUID CRYSTAL MODELING 213

small, e.g.m ≤ 5, faster convergence can be achieved with a larger value ofp. Increasing
p moves the left endpoint of the intervalK = [a, b] away from the desired eigenvalues. For
the examples of the present paper, we found

p = (m − 1)r − k − 1 (3.12)

to give rapid convergence. This corresponds toa = θmr−1 in (3.9)–(3.10). This is the largest
value of p for which the intervalK , in general, will be a proper interval that does not
contain the desired eigenvalues ofA. Example 5.4 in Section 5 illustrates the effect of
different choices ofp.

4. THE IRBL ALGORITHM

We describe our algorithm for computing thek smallest eigenvalues{λ j }k
j =1 and asso-

ciated orthonormal eigenvectors{u j }k
j =1 of a large symmetric matrixA. If the k smallest

eigenvalues form clusters of very close or multiple eigenvalues, and it is known that the
largest cluster contains̀ eigenvalues, then block sizer = ` is appropriate, because the
matrix Tmr can then have as many multiple eigenvalues as there may be in the set{λ j }k

j =1.
If all the k desired eigenvalues form a cluster, then, if possible,r should be chosen to be
equal tok. However, in many applications the multiplicity of the desired eigenvalues is not
known a priori, and choosingr = k can be prohibitive due to the requirement of computer
storage. The use of various block sizes is illustrated in the examples of Section 5.

Let {θ j , yj }mr
j =1 denote eigenvalue–eigenvector pairs of the symmetric block tridiagonal

matrixTmr defined by (2.1) and assume that the eigenvalues are ordered according to (3.4).
Let xj = Vmr yj be a Ritz vector of the matrixA, associated with the Ritz valueθ j . Then,
analogously with (2.2), we obtain that

‖Axj − xj θ j ‖ = ‖(AVmr − VmrTmr)yj ‖ = ∥∥Fr ET
r yj

∥∥, 1 ≤ j ≤ mr.

The stopping criterion

max
1≤ j ≤k

∥∥Fr ET
r yj

∥∥ ≤ ε‖A‖, (4.1)

whereε is a user supplied positive constant, would secure that each computed Ritz pair
{θ j , xj } would be an eigenpair of a matrixA+ 1 j , where1 j ∈ Rn×n satisfies‖1 j ‖ ≤ ε.

The evaluation of‖A‖ is impractical for large matricesA, however, the IRBL method
furnishes good approximations of‖A‖. Specifically, we approximate‖A‖ by the largest
norm of all the matricesTmr generated by the IRBL method. Thus, in our algorithm we use
the stopping criterion

max
1≤ j ≤k

∥∥Fr ET
r yj

∥∥ ≤ ε max‖Tmr‖, (4.2)

where the maximum in the right-hand side is taken over all the block tridiagonal matrices
Tmr generated by the block Lanczos method.

In the following algorithm for computing thek smallest eigenvalues and associated
eigenvectors of the matrixA, we typically restart the block Lanczos method withr random
vectors whenr eigenpairs have been found in order to be able to detect all eigenpairs.
This corresponds to setting the parameter “random” to true in the algorithm. This choice is
appropriate if we do not know how thek smallest eigenvalues ofA are distributed.

214 BAGLAMA ET AL.

In the numerical examples of Section 5, we also illustrate the behavior of the algorithm
when the parameter random is set to false. In this case the most recently available Krylov
subspace basis is orthogonalized against all determined eigenvectors and used as initial
matrix when restarting the block Lanczos method. In our experience the latter approach
reliably yields all the eigenvalues if the block sizer is at least as large as the number of
eigenvalues in the largest cluster among the desired eigenvalues. In this case often all desired
eigenpairs are determined faster when random is set to false than when random is true; see
Example 5.1.

ALOGRITHM 4.1. IRBL(r) method for computingk eigenpairs ofA associated with the
smallest eigenvalues.

Input: A, k, m, r ,ε, such that(m − 1)r ≥ k;
random:= true, if restart with random vectors,
random:= false, otherwise;

Output: eigenvalues{λ j }k
j =1, orthonormal eigenvectors{u j }k

j =1;
1. iconv := 0;
2. Choose r random vectorsv j and let Vr = [v1, v2, . . . , vr];
3. ishift := 0;
4. Orthogonalize the columns of Vr against the iconv converged eigenvectors.

Orthonormalize the columns of Vr ;
5. Apply m steps of the block Lanczos method to the matrix A with initial orthonor-

mal matrix Vr in order to determine the matrices Tmr, Vmr, and Fr in (2.1);
The vectors generated are reorthogonalized against already determined columns
of Vmr as well as against already converged eigenvectors;

6. Compute the eigenvalues (3.4) of Tmr;
7. Check whether any new eigenpairs have converged:

Let‖Fr ET
r yj ‖ ≤ ε max‖Tmr‖5 be satisfied for̀ of the mr indices j;

if k − iconv ≤ ` and not random then
Store` converged eigenpairs; exit

endif;
if ` ≥ r then

Store the eigenpairs associated with the r smallest of the` newly
converged eigenvalues;
iconv := iconv + r ; m := m − 1;
if random then go to 2

endif;
8. if ishift = 0 then define the intervalK = [a, b] by (3.9) else by (3.10);
9. Compute m Leja points{zj }ishift+m

j =ishift+1 for K in the presence of the points{zj }ishift
j =1

by Algorithm 3.2;
10. Apply shifts{zj }ishift+m

j =ishift+1 according to (2.3)-(2.7) and let Vr := V++
r , where

V++
r is defined by (2.7);

11. ishift := ishift + m; go to 4.

The design of Algorithm 4.1 is motivated by its performance in numerous numerical
experiments. Theoretical results on the algorithm are still incomplete. Difficulties in the
analysis stem from the fact that the intervalK keeps changing during iterations. Our selection

5 max‖Tmr‖ denotes the maximum over all 1+ ishift/m matricesTmr generated so far.

COMPUTATIONS IN LIQUID CRYSTAL MODELING 215

of the intervalK is based on extensive numerical experiments, some of which are reported in
Section 5. The choice of weight function (3.11) also is motivated by numerical experiments;
this weight function gave faster convergence thanw(z) = 1.

Algorithm 4.1 can be enhanced. For instance, it is quite straightforward to implement a
change of block size during the iterations. It may be attractive to reduce the block size when
iconv eigenpairs have been computed andk − iconv< r .

5. NUMERICAL EXAMPLES

This section presents some computed examples that illustrate the performance of Algo-
rithm 4.1. The algorithm was implemented in both MATLAB and FORTRAN. In Examples
5.5–5.8 we tracked the equilibrium configuration of the liquid crystals. Due to the large
size of the matrices used in tracking the equilibrium configuration the FORTRAN code was
used; the MATLAB code was used for all other examples. All numerical experiments were
carried out on HP work stations using double precision arithmetic, i.e., with approximately
16 significant digits. Unless stated otherwise, the parameterp in (3.9) and (3.10) is defined
by (3.12). We compare Algorithm 4.1 with subroutines in ARPACK by Lehoucqet al.
[21] and with the subroutine DNLASO of the package LASO2 by Scott [31]. ARPACK
implements the IRL method with “exact shifts” as described by Sorensen [33]. Thus, in
order to compute thek smallest eigenvalues ofA, ARPACK applies, say,mr steps of the
Lanczos method to build up an orthogonal basis of a Krylov subspace of dimensionmr, and
to determine a Lanczos decomposition with a symmetric tridiagonal matrixT ∈ Rmr×mr.
Then ARPACK applies themr − k largest eigenvalues ofT ∈ Rmr×mr as shiftszj . Now a
new Lanczos decomposition is computed, and the largest eigenvalues of a new symmetric
tridiagonal matrixT are used as shifts, and so on. The use of exact shifts often requiresmr to
be chosen substantially larger thank; see the computed examples in [3, 6] for the caser = 1.

The subroutine DNLASO implements the Lanczos method with selective reorthogonal-
ization (see [26]) and allows the user to specify the amount of computer storage available
for the code to use. Typically, the more storage available, the fewer restarts necessary
and the faster convergence to the desired eigenvalues and associated eigenvectors. The
subroutine allows the user to select block-size for the Lanczos method. If the block size,
denoted by NBLOCK, is larger than one, then DNLASO implements a block Lanczos al-
gorithm. The parameter MAXJ of DNLASO specifies the order of the largest symmetric
block-tridiagonal Lanczos matrix generated by the algorithm before restart and MAXJ is
required to be larger than or equal to 6· NBLOCK. The storage requirement for the block
Lanczos vectors generated by DNLASO isn · MAXJ storage locations. The total storage
requirement for DNLASO is larger thann · (MAXJ + NBLOCK), in addition to the storage
needed to represent the matrixA. DNLASO and ARPACK are more sophisticated than
our experimental code for Algorithm 4.1 and have multiple stopping criteria. This makes
a comparison between DNLASO, ARPACK and Algorithm 4.1 difficult. The subroutine
DNLASO allows the specification of a parameter NFIG, the number of desired correct dec-
imal digits in the computed eigenvalue approximations. In all examples, we chose NFIG
so as to give the same accuracy as Algorithm 4.1. ARPACK is designed to terminate the
computations when|λ j − λ

(c)
j | < TOL|λ(c)

j | for 1≤ j ≤ k, whereλ
(c)
j denotes a computed

approximation ofλ j . The parameter TOL is chosen by the user; a large value of TOL led
ARPACK to fail to detect some multiple eigenvalues. In all examples we chose the largest
value of TOL for which ARPACK gave the same accuracy as Algorithm 4.1 without missing

216 BAGLAMA ET AL.

any desired eigenvalues. The iterations with our code for Algorithm 4.1 were terminated
when condition (4.2) was satisfied.

In all computed examples with block size one we determined the first initial Lanczos
vector by generating ann-vector with normally distributed random numbers N(0, 1) as
entries, and then normalized the vector to have unit length. In experiments with block sizes
larger than one, the first vector in the initial block is the initial vector used in experiments
with block-size one. The entries of the other vectors in the initial block are generated analo-
gously. The advantage of using normally distributed random numbers instead of uniformly
distributed ones has been pointed out by Ericsson and Ruhe [11]. The initial vector used in
DNLASO, ARPACK and our code is the same for each particular example, but may differ
for different examples.

Several tables have a column labeled “maximum error.” Letλ
(c)
j denote the computed

approximation ofλ j . This column displays max1≤ j ≤ k |λ(c)
j − λ j |. The column labeled “No.

matrix–vector products” reports the number of matrix–vector product evaluations with the
matrix A required to satisfy the stopping criterion. The evaluation of the product ofA with
ann × r matrix counts asr matrix–vector products.

EXAMPLE 5.1. LetA= diag(a11, a22, . . . , a100,100) have entries

aii =
{

1 × 10−10, if 1 ≤ i ≤ 4,
i 2

100, if 5 ≤ i ≤ 100.

We wish to compute the five smallest eigenvalues and associated eigenvectors ofA, and used
Algorithm 4.1 with ε = 1× 10−9, block sizes 1≤ r ≤ 5, and several values ofm. Unless
explicitly stated otherwise, the parameter random in Algorithm 4.1 is set to true. The
algorithm determines the eigenvalues in increasing order. Results are displayed in Table I,
which shows the number of matrix–vector products required for the computation of every set
of r eigenpairs for different block sizesr , as well as the number of matrix-vector products
required for the computation of the remaining five modr eigenpairs associated with the
largest of thek desired eigenvalues. For instance, with block sizer = 2, the computation
of the first two eigenpairs to desired accuracy required the evaluation of 298 matrix–vector
products, and the computation of the next two eigenpairs required the evaluation of 318
additional matrix–vector products. The determination of the fifth eigenpair required the
computation of 300 further matrix–vector products.

TABLE I

Example 5.1: IRBL Method

No. matrix–vector products
Block Consecutive No. Lanczos Maximum
sizer shiftsm vectorsmr λ1 λ2 λ3 λ4 λ5 Total error

1 10 10 169 161 183 174 186 873 8.33× 10−16

2 5 10 - 298 - 318 300 916 1.78× 10−15

3 5 15 - - 312 - 324 636 4.44× 10−16

4 5 20 - - - 396 320 716 3.89× 10−16

5 4 20 - - - - 400 400 5.55× 10−16

4 5 20 Random= false in Alg. 4.1 380 2.83× 10−16

COMPUTATIONS IN LIQUID CRYSTAL MODELING 217

TABLE II

Example 5.1: ARPACK

No. Lanczos No. matrix–vector Maximum
vectors products error

10 2868 9.99× 10−15

15 946a 2.00× 10−14

20 786a 9.99× 10−15

25 978 1.40× 10−14

30 1017 1.66× 10−14

a Not all of the multiple eigenvalues found.

The last row of Table I shows the number of matrix–vector product evaluations required
by Algorithm 4.1 whenr = 4 and random is set to false. These choices ofr and random are
appropriate if we a priori know that there is a cluster of four eigenvalues that is well separated
from the fifth eigenvalue. Table I shows thatr = 4 and random= false yields the fastest
convergence. This depends on that the matrixVr used in the restart after four eigenpairs
have been found, contains more useful information about the fifth desired eigenpair than a
random matrix. We note that Algorithm 4.1 was able to compute all the desired eigenpairs
for all choices ofr and random.

In ARPACK we set TOL= 1×10−16 in order not to miss any of the multiple eigenvalues.
Table II shows the number of matrix–vector products required by ARPACK and the largest
error in any one of the the computed eigenvalues. ARPACK failed to detect one of the
multiple eigenvalues when the number of Lanczos vectors used was 15 and 20. We remark
that a locking-and-purging strategy for ARPACK, suggested by Lehoucq and Sorensen [20],
may enable this method to detect more multiple eigenvalues. However, this strategy is not
implemented in the available code for ARPACK.

Table III shows the number of matrix–vector products required and the largest error
in any one of the eigenvalues that were computed by the subroutine DNLASO for block
sizes 1≤ NBLOCK ≤ 5, and NFIG= 10. For 1≤ NBLOCK ≤ 3, we let MAXJ= 20, and
for NBLOCK equal to 4 or 5, we use MAXJ= 30. These values of MAXJ satisfy MAXJ≥
6 · NBLOCK, as required by DNLASO. The subroutine DNLASO failed to detect all the
multiple eigenvalues for block sizes 1 and 3. In this example Algorithm 4.1 required the
least computer storage and matrix-vector evaluations, and accurately determined all desired
eigenpairs.

TABLE III

Example 5.1: DNLASO

Block size No. Lanczos vectors No. matrix–vector Maximum
NBLOCK MAXJ products error

1 20 1439a 1.47× 10−9

2 20 1509 5.27× 10−10

3 20 1910a 7.49× 10−11

4 30 2069 1.61× 10−11

5 30 2630 2.55× 10−12

a Not all of the multiple eigenvalues found.

218 BAGLAMA ET AL.

We emphasize that the purpose of the computed examples of this section is to show
the performance of the algorithms when only few vectors can be stored in fast computer
memory. An increase inm would reduce the matrix-vector products required to determine
the desired eigenpairs. Related computed examples can be found in [3].

EXAMPLE 5.2. This example is identical with Example 5.1, except for the selection of
shifts. In particular, we used the same matrixA, initial matrix Vr , and value ofε. Instead
of Leja shifts, we used the zeros of themth degree Chebyshev polynomials of the first kind
for the intervalsK = [a, b] generated by Algorithm 4.1 as shifts. Thus, for each interval
K = [a, b], we applied the shifts

zj = b − a

2
cos

(
2 j − 1

2m
π

)
+ b + a

2
, 1 ≤ j ≤ m. (5.1)

This choice of shifts is quite natural, because among all monic polynomials of degreem,
the monicmth degree Chebyshev polynomial is of smallest magnitude onK . Thus, the
polynomialψmq in (2.9) is a product of Chebyshev polynomials of degreem for different
intervalsK . Table IV displays the results of the computations, and is analogous to Table I.
The results are typical for many numerical examples; Leja shifts yield faster convergence
than Chebyshev shifts (5.1). This depends on that the Chebyshev shifts for a given interval
only depend on the endpoints of that interval, while Leja shifts also depend on the location
of previously applied shifts.

EXAMPLE 5.3. LetA be the 900× 900 matrix obtained by discretizing the two-dimens-
ional negative Laplace operator on the unit square by the standard 5-point stencil with
Dirichlet boundary conditions. We wish to determine the eigenpairs associated with the
six smallest eigenvalues ofA. It is well known that the largest multiplicity of the desired
eigenvalues is 2. Specifically,

λ1 < λ2 = λ3 < λ4 < λ5 = λ6 < · · · ;

see, e.g., [34, Section 8.4]. We choose block sizer = 2 and set random to false. Letting
m= 5 yields a subspace of dimensionmr = 10. Forε = 1 × 10−5. Algorithm 4.1 required
the evaluation of 232 matrix–vector products with the matrixA and gave a maximum error
over all computed eigenvalues of 5.82× 10−9.

TABLE IV

Example 5.2: IRBL Method with Zeros of Chebyshev Polynomials as Shifts

No. matrix–vector products
Block Consecutive No. Lanczos Maximum
sizer shiftsm vectorsmr λ1 λ2 λ3 λ4 λ5 Total error

1 10 10 199 188 199 195 258 1039 6.49× 10−15

2 5 10 - 358 - 550 792 1700 1.19× 10−14

3 5 15 - - 432 - 444 876 3.44× 10−16

4 5 20 - - - 436 384 820 1.55× 10−15

5 4 20 - - - - 580 580 9.43× 10−16

4 5 20 random= false in Alg. 4.1 484 2.22× 10−16

COMPUTATIONS IN LIQUID CRYSTAL MODELING 219

When using ARPACK to compute these eigenpairs, we had to set TOL to 1× 10−10;
a larger value of TOL resulted in ARPACK missing multiple eigenvalues. When allow-
ing 10 Lanczos vectors, i.e.,mr = 10, ARPACK required the evaluation of 1329 matrix–
vector products with the matrixA, and the largest error in a computed eigenvalues was
9.37× 10−12. Increasing the number of Lanczos vectors to 20 reduced the number of
matrix–vector products required by ARPACK to 334 and gave a maximum error in the
computed eigenvalues of 1.88× 10−12.

An application of DNLASO with block size 2, MAXJ= 20, and NFIG= 10 required
the evaluation of 1094 matrix–vector products and gave a maximum error in the computed
eigenvalues of 1.11×10−10. Thus, Algorithm 4.1 required the fewest matrix–vector product
evaluations withA, and the least computer storage.

EXAMPLE 5.4. LetA= diag(a11, a22, . . . , a100,100) with entries

aii =
{

1× 10i −11, if 1 ≤ i ≤ 4,
i 2

100, if 5 ≤ i ≤ 100.

We seek to compute thek smallest eigenvalues and associated eigenvectors for 1≤ k ≤ 4
and use Algorithm 4.1 withm= 5, r = 4, ε = 1× 10−8, and random= false. We wish to
illustrate the performance of the algorithm for different choices of the parameterp in (3.9)
and (3.10).

Table V displays the results achieved with Algorithm 4.1. The largest error in any one
of the computed eigenvalues was 4.71× 10−14. We allowed the evaluation of at most 5000
matrix–vector products with the matrixA, and the computations were terminated when this
number was exceeded before the desiredk eigenpairs had been found. Table V illustrates
the effect of the choice ofp, i.e., the effect of the choice of left endpoint of the interval
K = [a, b]. If this endpoint is close to the desired eigenvalues, then we get poor or no
convergence. Faster convergence is achieved when the left endpoint is moved away from
the desired eigenvalues.

TABLE V

Example 5.4: IRBL Method; m= 5, r = 4

No. matrix–vector products

p k= 1 k = 2 k = 3 k = 4

0 900 760 620 560
1 680 640 580 600
2 600 540 540 500
4 540 500 480 440
6 460 460 480 420
8 440 420 400 340

10 400 340 340 360
11 340 340 360 340
12 340 360 340
13 360 340
14 340

220 BAGLAMA ET AL.

ARPACK required the evaluation of 570 matrix–vector products in order to find the
smallest eigenvalue ofA with a Krylov subspace of size 20 and TOL= 1× 10−7. The
error in the computed eigenvalue was 3.45× 10−14. The computation of the four smallest
eigenvalues by ARPACK required the evaluation of 889 matrix–vector products, with a
maximum error over the computed eigenvalues of 2.31× 10−14.

When we tried to compute only the two smallest eigenvalues ofAand associated eigenvec-
tors with ARPACK, the scheme failed to converge. More precisely, setting TOL= 1× 10−7

and allowing a Krylov subspace with at most 20 Lanczos vectors and 180,020 matrix–vector
products with the matrixA gave no convergence to the desired eigenpairs. Increasing the
Krylov subspace to dimension 50 and allowing the evaluation of 480,050 matrix–vector
products still did not produce the desired eigenpairs. Our experience was similar when we
instead tried to determine the eigenpairs associated with the three smallest eigenvalues.

DNLASO with NFIG= 10, MAXJ= 30, and NBLOCK= 4 determined the three small-
est eigenvalues using 3487 evaluations of matrix–vector products withA, and the com-
putation of the four smallest eigenvalues required the evaluation of 1304 matrix–vector
products. However, DNLASO was not able to compute only the smallest or only the two
smallest eigenvalues and associated eigenvectors before the computations were terminated
because 16,000 matrix–vector products had been evaluated. Convergence could be achieved
by reducing NFIG, but then the computed eigenvalues were inaccurate.

The remaining examples of this section are concerned with liquid crystal modeling. We
used the valuesL1 = 1

200, L2 = 3
400, andL3 = 3

400 for the elastic constants, andB= 2 and
C= 2

9 for the bulk constants in (1.4); see [36] for a discussion on the determination and
relationship between these constants. We do not report details about the computational
work required; such details have been provided in the previous examples already. Instead,
we focus on how Algorithm 4.1 can be applied in the context of liquid crystal modeling.

EXAMPLE 5.5. We track the equilibrium configuration of the liquid crystals in the two-
dimensional slab

Ä = {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1}, (5.2)

which is discretized by a 41× 41 grid. Discretization of the Euler–Lagrange equations by
finite differences on this grid, with the boundary condition determined by strong surface an-
choring (1.6) withQ0 = 3vvT − I , yields a matrixGQ(Q, T) of ordern = 5× 392 = 7605.
The initial tensorsQ = Q(p), p∈ Ä, are defined byQ(p) = 3v(p)v(p)T − I , wherev(p)

is the unit vector directed toward the center ofÄ.
We let the initial normalized temperatureT of the liquid crystals beTa = 0.375 and

track the equilibrium configuration for decreasing temperature untilTb = 0.280. Figure 5.1
displays the smallest eigenvalue of the matrixGQ(Q, T) and the minimum energy of the
liquid crystals versusT . For temperatures larger than 1/3 the model presented here is not
physically realistic as can be seen from the fact that the minimum energy of the system is
a decreasing function ofT for T ≥ 1/3; see Fig. 5.1b.

Four solution paths, path (1)–path (4), are determined. We followed path (1) to path (2).
This was done with Algorithm 4.1 with input parametersr = 1, ε = 1× 10−9, m= 10,
andk = 1. These parameter values are used during path following in Examples 5.7 and
5.8 as well. The initial temperature on path (1) isTa = 0.375 and the final tempera-
ture on path (2) isTb = 0.280. We found a singular point(Q0, T0) for T0 = 0.3012 with

COMPUTATIONS IN LIQUID CRYSTAL MODELING 221

FIG. 5.1. Example 5.5: two-dimensional slab with strong surface anchoring of the liquid crystals. (a) Smallest
eigenvalue of the matrixGQ(Q, T) vs temperatureT . Paths (3) and (4) are represented by the same curve.
(b) Minimum energy vs temperatureT . The model is unrealistic forT ≥ 1/3.

Algorithm 1.1. A vector in the null space ofGQ(Q0, T0) is determined by Algorithm 4.1
simultaneously. We then used Algorithm 4.1 with input parametersr = 3, ε = 1× 10−9,
m= 9, andk = 3 to compute the dimension and an orthonormal basis of the null space of
GQ(Q0, T0). For these computations, we chose an initial matrixV3 ∈ Rn×3 with random
orthonormal columns that, moreover, are orthogonal to the vector in the null space already
known. Null space computations with Algorithm 4.1 are carried out similarly in Examples
5.6–5.8. In the present example, we found the dimension of the null space to be one. The
null space is orthogonal toGT (Q0, T0) and, therefore, the singular point is a bifurcation
point.

We followed the intersecting paths through the point(Qo, To), paths (3) and (4) in
Fig. 5.1, by taking a step in the tangent direction along each path. Note that paths (3)
and (4) are represented by the same curve. This is a consequence of the symmetry of the
problem.

When traversing the intersecting curves, we passed another singular point(Q1, T1) for
T1 = 0.3232; see Fig. 5.1. We used Algorithm 4.1 to compute the null space of the matrix
GQ(Q1, T1). The null space is of dimension one, and it is not orthogonal toGT (Q1, T1).
Therefore the singular point is a limit point.

EXAMPLE 5.6. We track the equilibrium configuration of the liquid crystals in the two-
dimensional slab (5.2) and model weak surface anchoring of the liquid crystal molecules
with W = 10 in (1.5). We use a symmetric finite difference discretization of the Euler–
Lagrange equations described in [2] on a 41× 41 grid and obtain a symmetric matrix
GQ(Q, T) of ordern = 5× 412 = 8405.

Let the initial temperature and tensors beQ0 andT0 of Example 5.5 and minimize the
free energy by using the Euler–Lagrange equations. The matrixGQ(Q0, T0) so obtained
has three negative eigenvalues. We follow the largest negative eigenvalue ofGQ(Q0, T0)

with Algorithm 1.1 as we increaseT . This is the eigenvalue of smallest magnitude of
GQ(Q, T), and this eigenvalue vanishes at the singular points(Q, T) of this matrix. We
obtain the singular point(Q2, T2) for T2 = 0.3013 and a vector in the null space of the
matrixGQ(Q2, T2). Algorithm 4.1 withε = 1×10−9, m= 5,k = r = 4, and random= false
is applied to determine the entire null space ofGQ(Q2, T2). It is found to be of dimension
one and is orthogonal toGT (Q2, T2). Therefore, the singular point is a bifurcation point.

Similarly as in Example 5.5, we tracked four different solution paths between the tem-
peraturesTa = 0.37 andTb = 0.28. Figure 5.2 shows the largest negative eigenvalue of the

222 BAGLAMA ET AL.

FIG. 5.2. Example 5.6: two-dimensional slab with weak surface anchoring of the liquid crystals. The points
in the graphs labeled (a)–(f) correspond to the images (a)–(f) in Fig. 5.3 (a) Eigenvalue of smallest magnitude of
the matrixGQ(Q, T) vs temperatureT . (b) Minimum energy vs temperatureT .

matrix GQ(Q, T) and the minimum energy of the liquid crystals versus the temperature.
The model with weak surface anchoring of the liquid crystals displays physically reasonable
behavior also forT ≥ 1/3.

Figures 5.3a–f display the orientation of the liquid crystal molecules in the slab (5.2).
Let λ(p) be an eigenvalue of largest magnitude of the tensorQ(p), and letw(p) be an
associated normalized eigenvector. The figures show the directorsλ(p)w(p) for p∈ Ä.
The lengths of the lines in the figures are proportional to the length of the directors. No
line indicates random orientation of the molecules. Areas with liquid crystal molecules in
random directions are often referred to as the defect of the equilibrium configuration.

Figure 5.3a shows the directors at the bifurcation point forT2 = 0.3013. Figures 5.3b–f
are obtained when following path (3) as indicated in Fig. 5.2a. The defect of the equilibrium
configuration splits and the two areas move towards the corners ofÄ. The images obtained
when following path (4) instead are the images for path (3) rotated 90◦.

EXAMPLE 5.7. The equilibrium configuration of the liquid crystals is tracked for the
three-dimensional slab (1.1) witha = b= c= 1. We discretize the slab by finite differences
on a 21× 21× 21 grid. Strong surface anchoring (1.6) of the liquid crystals is imposed, and
we obtain a matrixGQ(Q, T) of ordern = 5× 193 = 34295. The initial tensors are given
by Q(p) = 3v(p)v(p)T − I , p∈ Ä, wherev(p) is the unit vector directed toward the center
of Ä, analogously with Example 5.5.

The initial and final temperatures used wereTa = 0.1 andTb = 0.0, respectively. Figure 5.4
shows the smallest eigenvalue of the matrixGQ(Q, T) and the minimum energy of the
liquid crystals versus the temperature. We followed 16 solution paths, but Fig. 5.4a only
shows five distinct paths. This is due to the symmetry of the problem.

We first followed path (1) starting withTa = 0.1 to path (2) ending withTb = 0.0. A
singular point(Q3, T3) was found on the path for atT3 = 0.0344; see Fig. 5.4a. Using
Algorithm 4.1, we found that the dimension of the null space ofGQ(Q3, T3) is three,
as well as an orthonormal basis of the null space. Since the null space is orthogonal to
GT (Q3, T3), the singular point is a bifurcation point.

We followed the intersecting curves, paths (3–16) in Fig. 5.4a, by taking a step in the
tangent directions along these curves. No other singular points were found along these
curves for temperatures betweenTa = 0.1 andTb = 0.0.

Figure 5.4b displays the minimum energy for the different paths. The graph shows that,
starting from the bifurcation point, the minimum energy increases as we follow the paths

COMPUTATIONS IN LIQUID CRYSTAL MODELING 223

FIG. 5.3. Example 5.6: images of the equilibrium configurations of the liquid crystals for several tempera-
tures: (a)T = 0.3013; (b)T = 0.3039; (c)T = 0.3131; (d)T = 0.3210; (e)T = 0.3249; (f)T = 0.3174.

FIG. 5.4. Example 5.7: three-dimensional example with strong surface anchoring of the liquid crystals.
(a) Smallest eigenvalue of the matrixGQ(Q, T) vs temperatureT . (b) Minimum energy vs temperatureT .

224 BAGLAMA ET AL.

TABLE VI

Example 5.7: Symmetry Properties and Equivalence

Classes for the Different Paths in Fig. 5.4a

Symmetry of the field
of theQ tensors

Equivalence
Path x1x2 x1x3 x2x3 classes

1
√ √ √

path 1

2
√ √ √

path 2

3
√ √ √

path 3
4

√
paths 4, 5, 6

5
√

paths 4, 5, 6
6

√
paths 4, 5, 6

7
√

paths 7 – 12
8

√
paths 7 – 12

9
√

paths 7 – 12
10

√
paths 7 – 12

11
√

paths 7 – 12
12

√
paths 7 – 12

13
√ √ √

path 13
14

√
paths 14, 15, 16

15
√

paths 14, 15, 16
16

√
paths 14, 15, 16

(1,7–16) and the temperature increases. When we follow the paths (2–6) the minimum
energy decreases as temperature decreases.

This three-dimensional problem illustrates symmetric properties of the field ofQ tensors
on different solution paths; see Table VI. The solution paths belong to equivalence classes.
For example, the paths (4,5,6) are in the same equivalence class because these paths yield
the same smallest eigenvalue graph; see Fig. 5.4a. These paths yield the same field ofQ
tensors up to a relabeling of the coordinate axes. The different equivalence classes are shown
in the last column of Table VI.

EXAMPLE 5.8. The slab and boundary conditions for this example are the same as
for Example 5.7, but we discretize the Euler–Lagrange equations on a finer mesh; the
slab is discretized by a 41× 41× 41 grid and this yields a matrixGQ(Q, T) of order
n = 5 × 393 = 296,595. We started with the same initial temperature and tensor field as in
Example 5.7 and found a singular point(Q4, T4) for T = 0.0356 and a vector in the null
space ofGQ(Q4, T4). We applied Algorithm 4.1 to determine an orthonormal basis of the
null space ofGQ(Q4, T4) and its dimension. The latter is three. Since the null space is
orthogonal toGT (Q4, T4), the singular point is a bifurcation point.

6. CONCLUSION AND EXTENSION

The paper describes a new algorithm for computing multiple or very close eigenvalues
of a large sparse symmetric matrix. A comparison shows Algorithm 4.1 to be competitive
with the subroutine DNLASO in the LASO2 package and with ARPACK. In particular,

COMPUTATIONS IN LIQUID CRYSTAL MODELING 225

Algorithm 4.1 has been used successfully to determine the smallest eigenvalues and associ-
ated eigenvectors of large and sparse Jacobian matrices that arise in liquid crystal modeling.
The low storage requirement of Algorithm 4.1 is essential for this application due to the
large size of the Jacobian matrices.

Algorithm 4.1 is designed for the computation of eigenpairs associated with the smallest
eigenvalues of a matrixA. The algorithm can be used to compute the largest eigenvalues
of A by applying it to the matrix−A. A restarted Lanczos method for computing a few
nonextreme eigenvalues of a large sparse matrix has been described in [3], and it would
appear possible to modify the IRBL method of the present paper so that it can be used to
compute a few nonextreme eigenvalues as well.

ACKNOWLEDGMENT

We thank Richard Lehoucq and Axel Ruhe for comments and Reference [16].

REFERENCES

1. E. L. Allgower, C.-S. Chien, K. Georg, and C.-F. Wang, Conjugate gradient methods for continuation problems,
J. Comput. Appl. Math.38, 1 (1991).

2. J. Baglama,Krylov Subspace Methods with Application to Liquid Crystal Modeling, Ph.D. thesis, Department
of Mathematics and Computer Science, Kent State University, 1997.

3. J. Baglama, D. Calvetti and L. Reichel, Iterative methods for the computation of a few eigenvalues of a large
symmetric matrix,BIT 36, 400 (1996).

4. Z. Bai and J. Demmel, On a block implementation of Hessenberg QR iteration,Int’l J. High Speed Comput.
1, 97 (1989).

5. Å. Björck, Numerics of Gram-Schmidt orthogonalization,Linear Algebra Appl.197–198, 297 (1994).

6. D. Calvetti, L. Reichel and D. C. Sorensen, An implicitly restarted Lanczos method for large symmetric
eigenvalue problems,Elec. Trans. Numer. Anal.2, 1 (1994).

7. F. Chatelin,Eigenvalues of Matrices(Wiley, Chichester, 1993).

8. E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors
of large real-symmetric matrices,J. Comput. Phys.17, 87 (1975).

9. T. A. Davis and E. G. Gartland, jr., Finite element analysis of the Landau-de Gennes minimization problem
for liquid crystals,SIAM J. Numer. Anal., to appear.

10. A. A. Dubrulle and G. H. Golub, A multishift QR iteration without computation of the shifts,Numer. Algorithms
7, 173 (1994).

11. T. Ericsson and A. Ruhe, The spectral transformation Lanczos method for the solution of large sparse sym-
metric generalized eigenvalue problems,Math. Comp.35, 1251 (1980).

12. P. A. Farrell, A. Ruttan, and R. R. Zeller, Finite difference minimization of the Landau-de Gennes free energy
for liquid crystals in rectangular regions, inComput. Appl. Math., I, edited by C. Brezinski and U. Kulish
(Elsevier, Amsterdam, 1992), p. 137.

13. D. A. Flanders and G. Shortley, Numerical determination of fundamental modes,J. Appl. Phys.21, 1326
(1950).

14. G. H. Golub and R. Underwood, The block Lanczos method for computing eigenvalues, inMathematical
Software III, edited by J. R. Rice (Academic Press, New York, 1977), p. 361.

15. R. G. Grimes, J. L. Lewis and H. D. Simon, A shifted block Lanczos algorithm for solving sparse symmetric
generalized eigenproblems,SIAM J. Matrix Anal.15, 228 (1994).

16. J. Huitfeldt,Nonlinear Eigenvalue Problems — Prediction of Bifurcation Points and Branch Switching, Report,
Department of Computer Science, Chalmers University of Technology, G¨oteborg, 1991.

17. H. B. Keller,Lectures on Numerical Methods in Bifurcation Problems(Springer, Berlin, 1987).

226 BAGLAMA ET AL.

18. R. B. Lehoucq,Analysis and Implementation of an Implicitly Restarted Arnoldi Iteration, Ph.D thesis, Rice
University, Houston, 1995.

19. R. B. Lehoucq and K. J. Maschhoff,Implicitly Re-started Block Arnoldi Methods, in preparation.

20. R. B. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi iteration,SIAM
J. Matrix Anal. Appl.17, 789 (1996).

21. R. B. Lehoucq, D. C. Sorensen, P. A. Vu, and C. Wang,ARPACK: An Implementation of an Implicitly Restarted
Arnoldi Method for Computing Some of the Eigenvalues and Eigenvectors of a Large Sparse Matrix, 1996.
Code available from Netlib in directory scalapack.

22. F. Leja, Sur certaines suits li´ees aux ensemble plan et leur application `a la representation conforme,Ann.
Polon. Math.4, 8 (1957).

23. R. B. Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue problems,Math. Comp.
65, 1213 (1996).

24. R. B. Morgan and D. S. Scott, Generalizations of Davidson’s method for computing eigenvalues of sparse
symmetric matrices,SIAM J. Sci. Stat. Comput.7, 817 (1986).

25. C. R. Murray, S. C. Racine, and E. R. Davidson, Improved algorithms for the lowest few eigenvalues and
associated eigenvectors of large matrices,J. Comput. Phys.103, 382 (1992).

26. B. N. Parlett and D. S. Scott, The Lanczos algorithm with selective orthogonalization,Math. Comp.33, 311
(1979).

27. E. B. Priestly, P. J. Wojyowicz, and P. Sheng (Eds.),Introduction to Liquid Crystals(Plenum New York, 1975).

28. L. Reichel and W. B. Gragg, Algorithm 686: FORTRAN subroutines for updating the QR decomposition of
a matrix,ACM Trans. Math. Software16, 369 (1990).

29. A. Ruhe, Implementation aspect of band Lanczos algorithms for computation of eigenvalues of large sparse
symmetric matrices,Math. Comp.33, 680 (1979).

30. Y. Saad,Numerical Methods for Large Eigenvalue Problems(Halstead Press, New York, 1992).

31. D. S. Scott,LASO2-FORTRAN Implementation of the Lanczos Process with Selective Orthogonalization.
Code and documentation available from Netlib.

32. G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems,
SIAM J. Matrix Anal. Appl.17, 401 (1996).

33. D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method,SIAM J. Matrix Anal.
Appl.13, 357 (1992).

34. J. Stoer and R. Bulirsch,Introduction to Numerical Analysis, 2nd ed. (Springer, New York, 1993).

35. E. G. Virga,Variational Theories for Liquid Crystals(Chapman and Hall, London, 1994).

36. R. Zeller,Parallel Numerical Solutions of the Landau-de Gennes Minimization Problem for Liquid Crystals
in a Slab Geometry, Ph.D. thesis, Kent State University, 1993.

