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Equilibrium configurations of liquid crystals in a finite containment are minimizers
of the thermodynamic free energy of the system. It is important to be able to track an
equilibrium configuration as the temperature of the liquid crystals is decreased. The
path of the minimal energy configuration at a bifurcation point can be computed from
the null space of a sparse symmetric matrix, which typically is very large, e.g., of
order 3x 10°. We describe an implicitly restarted block Lanczos method designed for
the computation of a few extreme multiple or close eigenvalues and associated eigen-
vectors of a large sparse symmetric matrix and apply this method to determine the
desired null space. Our method generalizes the implicitly restarted Lanczos method
introduced by Sorensen. The method requires that certain acceleration parameters,
referred to as shifts, be chosen. The storage requirement depends on the choice of
shifts. We propose a new strategy for choosing shifts. Numerical examples illustrate
that the implicitly restarted block Lanczos method with shifts chosen in this manner
gives rapid convergence, reliably detects extreme multiple or close eigenvalues, and
requires little computer storage in addition to the storage used for the desired eigen-
vectors. These features make the method well suited for the application of tracking
an equilibrium configuration of liquid crystals. © 1998 Academic Press
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1. INTRODUCTION

The computation of an equilibrium configuration of liquid crystals and the tracking
such a configuration as the temperature of the liquid crystals decreases are computatio
challenging problems. Tracking of the equilibrium configuration requires the determinati
of a few, sayk, of the smallest eigenvalues and associated eigenvectors of a large sp
symmetric matrixA € R™", wheren can be as large asx310° andk typically is 4. Some
of the desired eigenvalues can be of multiplicity larger than one, or distinct and very clc
It is the purpose of the present paper to describe a new method for computing the des
eigenvalue—eigenvector pairs.

We begin with a description of the liquid crystals problem. The problem under consid
ation is to determine the minimum energy equilibrium configuration of liquid crystals in
slab

Q={(X1,%2,X3):0<x3<a,0<%x, <b,0<x3 <c} (1.1)

with surfaced Q2. Using the Landau—de Gennes formulation, the free energy can be expres
in terms of a tensor order parameter fi€ldsee Priestlet al. [27]. The free energy is given

by
F(Qa T) = FvoI(Q, T) + Fsurf(Q) = / fVO|(Q7 T) dv + /Q fsurf(Q) dS (1-2)
Q 9

whereQ = Q(p), pe R, is a 3x 3 symmetric traceless tensor, which is represented by

10 O 010 0 0 1
QP =0qu(p) |0 0 Of+qp |1 0 O|+aw(m|0 O O
00 -1 0 00 100
0 00
+q4(p)< O|+as(p) |0 O 1 (1.3)
010

and they; are real-valued functions @R. Theq; are to be determined so that the free energ
(1.2) is minimal. The representation

1 1
_EZQaﬂ,ﬁ Qay,y + §£3Qaﬂ,y Qay,ﬁ

1
fVO|(Q7 T) = EﬁlQaﬁ,y Qaﬂ,y + 2

+ %A tracg Q?) — %B traceg Q%) + %C trace Q?)2 (1.4)

uses the conventions that summation over repeated indices is implied and indices sepa
by commas represent partial derivatives. For example,

d d ,
Q“ﬂyQo‘Vﬂ_ZZZ Q[Ol ﬂ] Qle J/].

a=1 =1 y=1 IXg

The bulk parameter is assumed to be of the for = Ao(7 — 7p), where Aq and 7y
are constants and is the normalized temperature of the liquid crystals. In this paper w
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take 7o =0 and. Ao =2, which gives7 = %A. The quantitiesC,, £,, and L3 are elastic
constants, anff andC are bulk constants. Moreover,

fouri(Q) = Wirace((Q — Qo)?), (1.5)

where)V is a constant and the tens@, is determined by the boundary conditions fol
the functionsg. We consider two kinds of boundary conditions which model strong a
weak anchoring of the liquid crystals on the surfa€g respectively. Strong anchoring is
obtained by imposing the condition

Q(p) = Qo(p), peIf. (1.6)

This has the effect that
Fsurf(Q) = / fsurf(Q) ds=0. (1-7)
Q2

Weak anchoring of the liquid crystal molecules on the boundary is obtained by setting
constan®V in (1.5) to a finite value. Details can be found in [9, 12, 27, 35].

The minimum energy equilibrium configuration of the liquid crystals is determined
solving the Euler-Lagrange equations associated with (1.2). These equations yield a b
ary value problem for a system of nonlinear partial differential equations fou;tHais-
cretization by finite differences gives rise to a system of nonlinear equations of large o
which we represent as

G(Q,7) =0. (1.8)

We solve this system by Newton’s method. Each iteration by Newton’s method requires
solution of a linear system of equations with the matrix of partial derivaitvg$Q, 7)
obtained by the discretized Euler—Lagrange equations. We are interested in trackin
minimal energy equilibrium configuration as the temperatiiref the liquid crystals is
varied. This gives rise to a path-following problem, which we solve by using the Euls
Newton continuation method; see, e.g., [1, 17] for discussions on continuation meth
Points on the solution path at whi@y (Q, 7) is singular are referred to as singular points
We are interested in determining these points because they may be bifurcation points f
minimal energy equilibrium configuration. When the continuation method finds a point
solution path close to a singular point, we use the secant method to accurately determit
location of the singular point. Thus, we use the secant method to determine a temper
7o such that the minimum eigenvalue(7Zo) of Go(Q, 7o) vanishes. This is described in
the following algorithm.

ALGORITHM 1.1. Computation of a singular point.
Input: A2, 7O, 7O tol; Output:Tg, A1(To);
=1
. Minimize KQ, TW); ‘
. Compute the smallest eigenvald¢’ of the matrix Gy(Q, 710);
if 1] <tol thenZo:=TW; A1(To) =2 exit endif;
LT =7 —)L(l”ifj;%ﬁ; ji=i+1
. goto2 v

o UTA WN P
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We use Algorithm 4.1 of Section 4 to compute the smallest eigenvalue of the mat
of partial derivatives in step 3 of Algorithm 1.1. At the singular point the solution pat
might bifurcate. One technique for switching paths at bifurcation points is to determine
tangent vectors to the different branches of the solution path by solving a nonlinear sys
of polynomial equations of small order. Specifically, one solvesathebraic bifurcation
equationswhen the partial derivatives(Q, 7) at7 =7y is in the range oG o(Q, 7o),
and thdimit point bifurcation equationstherwise; see, e.g., [16, 17] and references therei
for further discussions. We can follow the desired solution path from a bifurcation point
taking a Newton step in the direction of an appropriate tangent vector.

The eigenvectors associated with the zero eigenvalues of the n@#iQ, 7o) are
required in the algebraic bifurcation equations for computing the tangent vectors of
solution path at a bifurcation point. Therefore it is necessary to determine the locatior
singular points and to compute the null spac&ef Q, 7o) atthese points. In the application
to liquid crystal modeling described in this paper, we also need to compute the dimen:
of the null space of5o(Q, 7o) at a singular point. Due to symmetry this dimension is
frequently a multiple of three. In view of the large order®§(Q, 7o) in our application,
it is highly desirable that the numerical method used for computing the wanted eigenval
and eigenvectors requires little computer storage in addition to the storage needed fo
computed eigenvectors. In fact, in order to reduce the storage requirement, we do not
allnonzero entries @b (Q, 7o) simultaneously, butinstead calculate them as needed wh
evaluating matrix—vector products witBg(Q, 79). The FORTRAN code for evaluating
these matrix—vector products was generated by the symbolic formula manipulation langt
Maple V.

This paper describes the implicitly restarted block Lanczos (IRBL) method for the co
putation of a few extreme eigenvalues of a large sparse symmetric matrix and applies
method to the computation of a few of the smallest eigenvalues and associated eigenve
of the matrixGo(Q, 7) introduced above. We denote the block size tand sometimes
refer to our block scheme as the IRB).fnethod. This method generalizes the implicitly
restarted Lanczos (IRL) method introduced by Sorensen [33] and more recently studie
Lehoucq and Sorensen [18, 20]. The IRBL method is based on the recursions formulz
the block Lanczos method, described, e.g., by Chatelin [7], Golub and Underwood [1
Grimeset al. [15], and Ruhe [29]. Similarly to the block Lanczos method, the IRBL metho
is well suited for the computation of multiple or very close eigenvalues. The main advant:
of the IRBL method, when compared with the block Lanczos method, is its smaller stor:
requirement when both eigenvalues and associated eigenvectors are required.

The IRBL method can be regarded as a curtailed block QR algorithm for the symme
eigenvalue problem; see, e.g., Baiand Demmel [4], and Dubrulle and Golub [10] for disc
sions of the latter. Similarly as in the block QR algorithm, the choice of shifts is importa
for the IRBL method. However, obvious generalizations of the Rayleigh or Wilkinson shif
that can be used in a block QR algorithm cannot be applied in the IRBL method, beca
the data required to compute these shifts is not available. We therefore propose a new
selection strategy.

We remark that shift selection in the IRL method, and the closely related implicit
restarted Arnoldi (IRA) method, has received considerable attention and is studiec
[3, 6, 20, 23, 33]. ARPACK by Lehoucet al. [21] implements the IRL and IRA meth-
ods as described by Sorensen [33]. Computed examples in Section 5 illustrate that
implementation of the IRL method does not reliably detect multiple eigenvalues; neitt
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does the IRL method described in [3]. A large number of numerical experiments, s
of which are reported in Section 5, indicate that the IRBL method of the present pe
reliably determines extreme eigenvalues with correct multiplicity and the associated ei
vectors. When the block size is chosen to be one, the IRBL method reduces to the IRE
method, which is an IRL method. In our experience the IRBL(1) method also reliably de
mines extreme eigenvalues with correct multiplicity. The IRBL(1) method differs from t
previously described IRL methods in the selection of Krylov subspace after an eigenva
eigenvector pair has been found and in the choice of shifts. The main advantage o
IRBL(1) method over the IRBIr() methods for > 1 is that it requires less computer stor-
age. However, the IRBL(1) method may require more arithmetic operations to detern
the desired eigenvalue—eigenvector pairs. This is illustrated in Section 5.

For any block size > 1, the IRBL{) method is a polynomial acceleration method with
special choice of accelerating polynomial. Polynomial acceleration for eigenvalue con
tation was first used by Flanders and Shortley [13], who applied Chebyshev polynom
More recent applications of Chebyshev polynomials as accelerating polynomials are
scribed by Chatelin [7] and Saad [30].

We note that when a suitable preconditioner folis known, the Davidson method
and extensions thereof can be competitive for the computation of a few eigenvalues
Davidson [8], Morgan and Scott [24], Murrat al. [25], and Sleijpen and van der Vorst
[32]. The determination of a suitable preconditioner for the liquid crystal problem that
focus on in this paper requires further study, and we therefore only consider methods
just require the matriA.

This paper is organized as follows. In Section 2 we review the block Lanczos method
develop the recursion formulas for the IRBL method. Section 3 describes our strategie
subspace and shift selections, and Section 4 presents our new IRBL algorithm. Nume
examples are displayed in Section 5, and concluding remarks can be found in Sectior

2. THE IRBL METHOD

Let {v; }rj:l be a given set of orthonomatvectors, and introduce the matti =[vy,
v, ..., ur]. An application ofm steps of the block Lanczos method with initial matvix
reduces the x n symmetric matrixA to a symmetric block tridiagonal matrik,, with
r x r blocks and upper triangular subdiagonal blocks, such that

AVinr = Vi Tmr + F E;r, (2-1)

whereVimr € R™™ Ve Imexr = Vi, Vg Vinr = Imr, @and Fr € R™ satisfiesv.! F =0. As
usually,, denotes thenr x mr identity matrix, andl . € R™™>*" consists of the first

columns ofly,,. The matrixE, e R™™>" consists of the last columns ofl.,,. We refer
to (2.1) as a block Lanczos decomposition, and the spage=rangeVy, as a Krylov
subspace.

Let® be an eigenvalue of the matrix,,, and lety be an associated eigenvector. Tlden
is an approximate eigenvalue afand is commonly referred to as a Ritz valuefofThe
vectorx = VY is an approximate eigenvector 8fand is referred to as a Ritz vector of
A. It follows from (2.1) that the residual erréxx — x6 associated with the Ritz p&if, x}
satisfies

IAX = XO| = [|(AVinr — Vir Tan) Yl = ||Fr ETy]|- (2.2)
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Throughout this papeji-|| denotes the Euclidean vector norm as well as the associat
induced matrix norm. Thus, the norm of the residual error can be determined with
explicitly computing the Ritz vectox by evaluating the right-hand side of (2.2). When
the norm (2.2) is small, the Ritz valu#eis an accurate approximation of an eigenvalue
of A. The determination of how weX approximates an eigenvector Afrequires further
spectral information ofA. In the basic block Lanczos method, one fixes the block size
and increasem until the right-hand side of (2.2) is sufficiently small. Then one compute
the Ritz pair{#, x}. When the order of the matri& and the number of Lanczos stapsare
large, secondary computer storage may have to be used tovgtorehis can slow down
the computations significantly. The use of secondary computer storage can be avoide
restarting the block Lanczos process periodically, and the IRBL method provides recur:
formulas for this purpose.

The IRBL method generalizes the IRL method by Sorensen [33]. Assume for definiten
that we are interested in computing themallest eigenvalues and associated eigenvecto
of the matrixA, wherek is a fixed and fairly small number. Let steps of the block Lanczos
method produce the block Lanczos decomposition (2.1).

Letze R and determine the QR factorizatidp, — z lnr = QR, whereQ, Re R™ > ™M",
Q" Q= Iy, andR is upper triangular. We obtain

(A= Z)Vinr — Vinr (Tor — Zlny) = R E/, (2.3.1)

(A= 2Z1)Vir — VimrQR= F,E], (2.3.2)
(A=2zD)(VmrQ) — (Vmr Q(RQ = R EQ, (2.3.3)
AMVinr Q) — (Vinr Q(RQ+ Z ) = F E/ Q. (2.3.4)

Let T, =RQ+ zlyn,. ThenT,} is a symmetric block tridiagonal matrix with the same banc
width asTy,,. The matrixQ in the QR factorization offy,, — z I is a generalized upper
Hessenberg matrix, whose lower triangular part has band width

The formulas (2.3) are similar to recursion formulas for the explicitly shifted block Q
method, and in analogy with the terminology for the latter method, we refeasoa shift.

After applying them — 1 shiftsz;, z,, ..., znw_1, We obtain
Avnj:r = Vr:rTrﬁr +F E;I—QJrv (2.4)
where

VnTr = [Uirv Uér, cees U$r] = erQ+v Q+ = Q10Q2--- Qm-1, TnTr = (Q—~_)-|--|_mrQ+

andQ; denotes the orthogonal matrix associated with the shifbitroduce the partitioning

THBT 0 .- 0
By
Ta=1]0 : (2.5)

T+

mr—r
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whereT,F e R™", B e R is upper triangular, and},_, € R™~"*M="_ Equate the

firstr columns on the right-hand side and left-hand side of (2.4). We then obtain

AVF =VITH + FY, (2.6)
whereV." =[v], v3, ...,y land R =y, ..., v5]B + F Ef QT lhyr . Themth shift
Zm is applied according to

VI =FY+ V(T — znly). (2.7)

IntroduceR= (R, R’ ;... R)™1, whereR; is the firstr columns and rows of the upper
triangular matrixR; in the QR factorization o, — z;1. Then

Vi = ym(AV:R, (2.8)

wherey, is a polynomial of degrem with zeroszy, z,, . . ., zy. Formula (2.8) shows that
we can multiply the initial matri¥/, for the Lanczos method by an accelerating polynomi:
in A of degreem without evaluating any matrix-vector products with the mat#ixin
addition to those matrix—vector products that were computed dumnisteps of the block
Lanczos method. The choice of accelerating polynomigl i.e., the choice of the shifts
71, 2o, . .., Zm, is discussed in Section 3. Here we only note that we wish to choogg soe
that rangeV, ™" is in, or close to, an invariant subspacefoéissociated with all or a subset
of thek desired eigenvalues &.

Having computed/*+ in the manner outlined, we orthonormalize the column¥.bf
and denote the orthonormal matrix so obtainedvbyThe block Lanczos process is now
restarted with the initial matri¥; . If the number of desired eigenvalues not larger than
the block sizer, then the computations proceed by periodically applyingteps of the
block Lanczos process ama shifts until the desirett eigenvalue—eigenvector pairs have
been found. After having applied shiftsq times, the relation (2.8) is replaced by

Vi = Ymg(AVIR, (2.9)

where g is a polynomial of degreenqg with zerosz, z, . . ., Zmq, andR is an upper
triangular matrix.

In view of that the eigenvalues of a block tridiagonal maffjy € R™>*™" with block
sizer and of rank larger than or equal or —r are of multiplicity less than or equal to
r, see, e.g., [7, Lemma 6.41, p. 268], the block Lanczos method with block siae
determine eigenvalues of multiplicity at mastlf k > r, we therefore proceed as follows
in order to be able to compute all thesmallest eigenvalues and associated eigenvectac
We carry out the computations as described above uwtiisired eigenvalue—eigenvectol
pairs have been found. We then generatandom vectors, orthogonalize them against tt
orthogonal eigenvectors already computed, as well as against each other, by the mo
Gram-Schmidt method. This gives the mawjx=[v4, vy, ..., v ], which we use to restart
the block Lanczos method. This selection of matfjixafterr eigenvalues have convergec
makes it possible to determine eigenvalues of multiplicity larger thamd associated
eigenvectors. We also use this choice of starting vector for the Lanczos process \
r=1.
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We remark that when = 1 the selection of initial vector for the Lanczos method differs
from the choice of initial vector proposed in [3]. The choice advocated in [3] typically yielc
faster convergence tosmall eigenvalues and associated eigenvectors; however, when th
are multiple or very close eigenvalues the eigenvalues found are not alwdysnielest
ones. The initial vector should be selected as proposed in the present paper when
important that the computed eigenvalues are the very smallest ones.

The computations in our present implementation of the block Lanczos method are ol
nized as proposed by Ruhe [29]. In this implementation the vectors in the Krylov subsp
bases generated are orthogonalized sequentially. Orthogonality of the basis vectors i
cured by reorthogonalization when necessary. Results in [5, 28] show that at most
reorthogonalization is required.

We note that on some computers and for certain matgas may be possible to si-
multaneously evaluatematrix—vector products with the matrix faster than to evaluate
matrix—vector products witth sequentially. This depends on whether simultaneous eval
ation may require less data movement. For such computers and matrices, it can be attre
to consider variants of the block Lanczos method that allow simultaneous evaluatior
r matrix—vector products. It is straightforward to modify our code for the IRBL metho
accordingly.

The recurrence formulas (2.3) are related to the explicitly shifted block QR algorithi
However, for reasons of numerical stability, we use an implementation based on recurre
formulas associated with an implicitly shifted block QR algorithm. These recursions c
be modified to allow double shifts. The latter is attractive wieis a general real matrix.
A code for a restarted block Arnoldi method for the computation of a few eigenvalues &
associated eigenvectors of a general real m&tixpresently being developed by Lehoucq
and Maschhoff [19].

Assume that we already have determirjedk k eigenvalue—eigenvector pairs, and are
to apply the block Lanczos method to the matiix € R"*" with orthonormal columns.
The eigenvectors already found requirg storage locations. In order not to increase the
demand of computer storage, we only apply- j steps of the block Lanczos algorithm,
which are followed bym — | shifts.

3. SHIFT SELECTION

The rate of convergence of the IRBL method depends on the choice of accelera
polynomial ymq in (2.9). We determine/mq by prescribing its zeros. The description of
our selection of zeros requires some notation.Kdie a closed and bounded interval on
the real axis, and lab(z) be a nonnegative continuous functionknWe refer tow(z) as
a weight function. Define a sequeni®}j2, of points inK as follows. Letz; be a point
such that

w(z1)|z1| = m§Xw(z)|z|, 21€K, (3.1
zc

and letz;, for j =2, 3, .. ., satisfy

-1 -1
wz)[] 1z -zl = anE%Xw(Z)H 1z—1zl|, z€eK. (3.2)
1=1 1=1

The pointsz; determined by (3.1)—(3.2) might not be unique. We call any sequence of poi
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{zj}§2, that satisfies (3.1)—(3.2) a sequence of weighted Leja points far sometimes
briefly Leja points folK . Whenw(z) = 1, the weighted Leja points agree with the “classical
Leja points studied by Leja [22].

We choose the zeros ¢ to be Leja points for certain intervals that do not contain
any of the desiret smallest eigenvalues &. Because we use these zeros as shifts in o
algorithm, we also refer to them as Leja shifts. The purpose of the Leja shifts is to darn
eigenvector components associated with undesired eigenvalues in the columns of the r
V, in (2.9).

We now describe how interval§ that do not contain any of tHesmallest eigenvalues
of A can be determined from the eigenvalues of the matfigggenerated by the IRBL
method. We may assume that the subdiagonal blocks of the block tridiagonal matrix
Tmr defined by (2.1) are nonsingular, which implies that @hk) > rm —r, because oth-
erwise we have found an invariant subspace.

PROPOSITION3.1. Let
AL S A2 < < Ap (3.3)
denote the eigenvalues of @nd let

01 <6< < Omr (3.4)

be the eigenvalues of the symmetric block tridiagonal matgp With nonsingular subdi-
agonal r x r blocks in a block Lanczos decompositi¢a1). Then

Ajp <05, 1<j<mr, (3.5)
An > Omr. (3.6)

Moreover,
Aj <Oy, 1<j<(m-=Dr. (3.7

Proof. We obtain from (2.1) that, = VnTn AVnr and, therefore,

. XTAX . X" Ax Y ey
Ak = _Mmax min < max min = _max min = k.
sdm(S)=k xeS XTX ~ sdim(S=k xeSnspaiVm} XTX  SdimS=k yeS YTy
x#0 x#0 y#0

This shows (3.5). The inequality (3.6) can be shown similarly. Finally, (3.7) follows frc
the fact that the eigenvalues &f,; have multiplicity at most. m

Assume thatm — 1)r > k and let the integep satisfy
O<sp=<(m-2Lr —k. (3.8)

Then, by (3.7), the intervéll = [0« +p, Omr] does not contain any of thesmallest eigenval-
ues of the matriA. This suggests the following choice of intervilsluring the computation
with the IRBL method. For now, we lgb be an arbitrary integer that satisfies (3.8). W
discuss different choices @f at the end of this section.
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Let V; e R™" be the initial matrix with orthonormal columns for the block Lanczos
method, compute the decomposition (2.1), determine the eigenleéshe matrixTp,
in (2.1), and order them according to (3.4). Define the endpoints of the interedl, b]
by

a:9k+r+pv b = 6. (3-9)

We let them first shifts{z; }5"21 be Leja points foK. Application of them shifts as described
in Section 2 yields a new matri¥,*" € R™" defined by (2.7). We orthonormalize its
columns and this gives a hew matrix, which we also refer tg,a¥Ve now applym steps
of the block Lanczos method with initial matri% in order to obtain a new block Lanczos
decomposition (2.1), with a new block tridiagonal matffi. Compute its eigenvalu&s
and order them according to (3.4). The endpoints ef [a, b] are updated by the formulas

a= 9k+r+p» b= max{b, Omr}- (3-10)
We then seleatn shiftszm, 1, Zmi2, - . . , Zom @s Leja points for this new intervill =[a, b]
in the presence of the points, z,, ..., z,. More precisely, assume that we already have

determined the pointiz;}[*% . The next set ofn points{z;}"%, 14,1 then is defined

by the following algorithm. The weight function in the algorithm is chosen to be

wherep satisfies (3.8).

ALGORITHM 3.2. Computen shifts as Leja points foK, givenm(q — 1) shifts.
Input: endpoints ofK, q, m,{z;}7*3 " ; Output:(zj} T q_1+1:

1. ji=m@-121 +1;

2. if j=1then
Zo .= point of largest magnitude dfk
else
Determine z € K, such that
j-1 j-1

w(ZJ)H 1zj —z| = TeaKXw(z)H 1z— z|,

Wherelu_;tz) is defined by (3.11)|_1
endif;
3. j=j+1
4. if j <mq then go to 2 else stop

The computation of the Leja poirgg, j > 1, by Algorithm 3.2 requires the maximization
of a product oveK. In order to reduce the computational effort necessary to determine Le
points, we discretize each updated inteialsing zeros of a Chebyshev polynomial of the
first kind of degreé for the intervalk, where¢ is sufficiently large.

We turn to the selection of integgrin (3.9)—(3.11). In [3] we described an algorithm
that corresponds to the case whiea 1 and considered eigenvalue problems in which the
desired eigenvalues were fairly well separated from the undesired ones. Wegdeufid
to be appropriate. This correspondsate: 61 in (3.9)—(3.10). However, when the largest
desired eigenvalues ok are close to the smallest undesired eigenvalues ahdm is
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small, e.gm < 5, faster convergence can be achieved with a larger valge lotcreasing
p moves the left endpoint of the interdél= [a, b] away from the desired eigenvalues. Fo
the examples of the present paper, we found

p=Mm-r —k-1 (3.12)

to give rapid convergence. This corresponda 06,1 in (3.9)—(3.10). This is the largest
value of p for which the intervalK, in general, will be a proper interval that does no
contain the desired eigenvalues Af Example 5.4 in Section 5 illustrates the effect o
different choices op.

4. THE IRBL ALGORITHM

We describe our algorithm for computing thkesmallest eigenvalues. }'j‘=1 and asso-

ciated orthonormal eigenvectofs; }'J-‘=1 of a large symmetric matri)d. If the k smallest
eigenvalues form clusters of very close or multiple eigenvalues, and it is known that
largest cluster containé eigenvalues, then block size=¢ is appropriate, because the
matrix Tr,, can then have as many multiple eigenvalues as there may be in I{b\q]#gg.
If all the k desired eigenvalues form a cluster, then, if possiblghould be chosen to be
equal tok. However, in many applications the multiplicity of the desired eigenvalues is 1
known a priori, and choosing= k can be prohibitive due to the requirement of compute
storage. The use of various block sizes is illustrated in the examples of Section 5.

Let{6;, y;}]L, denote eigenvalue-eigenvector pairs of the symmetric block tridiago
matrix Ty, defined by (2.1) and assume that the eigenvalues are ordered according to
Let X; = Vinry; be a Ritz vector of the matrid, associated with the Ritz valg. Then,
analogously with (2.2), we obtain that

||ij - Xj 9j || = ||(Aer - erTmr)yj ” = H I:r E;I—Yj

, I<j<mr
The stopping criterion

max [FEly; | < ellAl. (4.)
wheree is a user supplied positive constant, would secure that each computed Ritz
{0j, X;j} would be an eigenpair of a matrik+ Aj, whereA; € R™" satisfieg|Aj|| < e.

The evaluation of| A|| is impractical for large matrice8, however, the IRBL method
furnishes good approximations pA\||. Specifically, we approximatgA| by the largest
norm of all the matrice3,, generated by the IRBL method. Thus, in our algorithm we us
the stopping criterion

max || FEry; | < e max|Tonll (4.2)
where the maximum in the right-hand side is taken over all the block tridiagonal matri
Tmr generated by the block Lanczos method.

In the following algorithm for computing th& smallest eigenvalues and associate
eigenvectors of the matri&, we typically restart the block Lanczos method wittandom
vectors wherr eigenpairs have been found in order to be able to detect all eigenp:e
This corresponds to setting the parameter “random” to true in the algorithm. This choic
appropriate if we do not know how thesmallest eigenvalues & are distributed.
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In the numerical examples of Section 5, we also illustrate the behavior of the algoritl
when the parameter random is set to false. In this case the most recently available Kr
subspace basis is orthogonalized against all determined eigenvectors and used as
matrix when restarting the block Lanczos method. In our experience the latter appro
reliably yields all the eigenvalues if the block sizés at least as large as the number of
eigenvalues in the largest cluster among the desired eigenvalues. In this case often all de
eigenpairs are determined faster when random is set to false than when random is true
Example 5.1.

ALOGRITHM 4.1. IRBL() method for computing eigenpairs ofA associated with the
smallest eigenvalues.
Input: A, k, m, r,e, such thatm — 1)r > k;
random:=true, if restart with random vectors,
random:=false, otherwise;
Output: eigenvaluesi;}_;, orthonormal eigenvectorii; }_;;

L. iconv:i=0;

2. Choose r random vectotg and let V = [v1, vy, ..., v];

3. lshirt:=0;

4. Orthogonalize the columns of ®¥gainst the 4o, cOnverged eigenvectars

Orthonormalize the columns of V
5. Apply m steps of the block Lanczos method to the matrix A with initial orthonol
mal matrix V in order to determine the matrices,I, Vinr, and F in (2.1);
The vectors generated are reorthogonalized against already determined colun
of Vipr as well as against already converged eigenvectors;
6. Compute the eigenvalues (3.4) gf ;T
7. Check whether any new eigenpairs have converged:
Let||F E,Ty,- | < e max| T, ||® be satisfied for of the mr indices j;
if K — iconv < £ and not random then
Store? converged eigenpairs; exit
endif;
if £ > r then
Store the eigenpairs associated with the r smallest of thewly
converged eigenvalues;
iconvi=lcov+T;mi=m—1
if random then go to 2
endif;
8. if ighit = O then define the intervdd = [a, b] by (3.9) else by (3.10);
9. Compute m Leja pointg; }'**™ , for K in the presence of the poings; }
by Algorithm 3.2;
10. Apply shiftgz; }ifgf;;’:ﬂ according to (2.3)-(2.7) and let,\\=V,**, where
Vs defined by (2.7);
11. ishift :=lshit +M; goto 4

The design of Algorithm 4.1 is motivated by its performance in numerous numeric
experiments. Theoretical results on the algorithm are still incomplete. Difficulties in t
analysis stem from the fact that the interdeteeps changing during iterations. Our selectior

5 max| T, || denotes the maximum over alklig,x/m matricesT,,, generated so far.
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ofthe intervaK is based on extensive numerical experiments, some of which are reporte
Section 5. The choice of weight function (3.11) also is motivated by numerical experime
this weight function gave faster convergence tham) = 1.

Algorithm 4.1 can be enhanced. For instance, it is quite straightforward to impleme
change of block size during the iterations. It may be attractive to reduce the block size v
iconv €igenpairs have been computed &ndicony <.

5. NUMERICAL EXAMPLES

This section presents some computed examples that illustrate the performance of /
rithm 4.1. The algorithm was implemented in both MATLAB and FORTRAN. In Exampl
5.5-5.8 we tracked the equilibrium configuration of the liquid crystals. Due to the la
size of the matrices used in tracking the equilibrium configuration the FORTRAN code \
used; the MATLAB code was used for all other examples. All numerical experiments w
carried out on HP work stations using double precision arithmetic, i.e., with approxima
16 significant digits. Unless stated otherwise, the paranpeite(3.9) and (3.10) is defined
by (3.12). We compare Algorithm 4.1 with subroutines in ARPACK by Lehoetagl
[21] and with the subroutine DNLASO of the package LASO2 by Scott [31]. ARPAC
implements the IRL method with “exact shifts” as described by Sorensen [33]. Thus
order to compute thk smallest eigenvalues &, ARPACK applies, saynr steps of the
Lanczos method to build up an orthogonal basis of a Krylov subspace of dimensiand
to determine a Lanczos decomposition with a symmetric tridiagonal matR™ =M.
Then ARPACK applies thenr — k largest eigenvalues af e R™™*™" as shiftsz;. Now a
new Lanczos decomposition is computed, and the largest eigenvalues of a new symr
tridiagonal matrixT are used as shifts, and so on. The use of exact shifts often renuites
be chosen substantially larger tHarsee the computed examples in [3, 6] for the agas€l.

The subroutine DNLASO implements the Lanczos method with selective reorthogo
ization (see [26]) and allows the user to specify the amount of computer storage avail
for the code to use. Typically, the more storage available, the fewer restarts nece:
and the faster convergence to the desired eigenvalues and associated eigenvector
subroutine allows the user to select block-size for the Lanczos method. If the block ¢
denoted by NBLOCK, is larger than one, then DNLASO implements a block Lanczos
gorithm. The parameter MAXJ of DNLASO specifies the order of the largest symme
block-tridiagonal Lanczos matrix generated by the algorithm before restart and MAX
required to be larger than or equal teMBLOCK. The storage requirement for the block
Lanczos vectors generated by DNLASOnisMAXJ storage locations. The total storage
requirement for DNLASO is larger than (MAXJ + NBLOCK), in addition to the storage
needed to represent the matx DNLASO and ARPACK are more sophisticated thai
our experimental code for Algorithm 4.1 and have multiple stopping criteria. This mal
a comparison between DNLASO, ARPACK and Algorithm 4.1 difficult. The subroutit
DNLASO allows the specification of a parameter NFIG, the number of desired correct ¢
imal digits in the computed eigenvalue approximations. In all examples, we chose N
S0 as to give the same accuracy as Algorithm 4.1. ARPACK is designed to terminate
computations wherh; — A§°)| < TOL|/\§°)| for1<j <k, Wherekﬁc) denotes a computed
approximation oftj. The parameter TOL is chosen by the user; a large value of TOL |
ARPACK to fail to detect some multiple eigenvalues. In all examples we chose the lar
value of TOL for which ARPACK gave the same accuracy as Algorithm 4.1 without missi
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any desired eigenvalues. The iterations with our code for Algorithm 4.1 were termina
when condition (4.2) was satisfied.

In all computed examples with block size one we determined the first initial Lancz
vector by generating an-vector with normally distributed random numbers N(0O, 1) as
entries, and then normalized the vector to have unit length. In experiments with block si
larger than one, the first vector in the initial block is the initial vector used in experimer
with block-size one. The entries of the other vectors in the initial block are generated an:
gously. The advantage of using normally distributed random numbers instead of unifor
distributed ones has been pointed out by Ericsson and Ruhe [11]. The initial vector use
DNLASO, ARPACK and our code is the same for each particular example, but may dif
for different examples.

Several tables have a column labeled “maximum error.”)l.(j@tdenote the computed
approximation of ;.. This column displays max j < [»{” — A;|. The column labeled “No.
matrix—vector products” reports the number of matrix—vector product evaluations with
matrix A required to satisfy the stopping criterion. The evaluation of the produgtwith
ann x r matrix counts as matrix—vector products.

ExAMPLE 5.1. LetA=diag(a1, a2, - . ., &100100) have entries

1x 10710 if1<i<4,
' if5 <i < 100
We wish to compute the five smallest eigenvalues and associated eigenveét@aofised
Algorithm 4.1 withe =1 x 107°, block sizes kr <5, and several values ofi. Unless
explicitly stated otherwise, the parameter random in Algorithm 4.1 is set to true. T
algorithm determines the eigenvalues in increasing order. Results are displayed in Tat
which shows the number of matrix—vector products required for the computation of every
of r eigenpairs for different block sizes as well as the number of matrix-vector products
required for the computation of the remaining five ntodigenpairs associated with the
largest of thek desired eigenvalues. For instance, with block size2, the computation
of the first two eigenpairs to desired accuracy required the evaluation of 298 matrix—ve
products, and the computation of the next two eigenpairs required the evaluation of .
additional matrix—vector products. The determination of the fifth eigenpair required t
computation of 300 further matrix—vector products.

TABLE |
Example 5.1: IRBL Method

No. matrix—vector products

Block Consecutive No. Lanczos Maximum
sizer shiftsm vectorsmr A A2 A3 Aa As Total error
1 10 10 169 161 183 174 186 873 .38x 1076
2 5 10 - 298 - 318 300 916 A8 x 10715
3 5 15 - - 312 - 324 636 44 x 10716
4 5 20 - - - 396 320 716 .89 x 10716
5 4 20 - - - - 400 400 B5x 10716

4 5 20 Randore=false in Alg. 4.1 380 B3x 1071
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TABLE I
Example 5.1: ARPACK

No. Lanczos No. matrix—vector Maximum

vectors products error
10 2868 999 x 107°
15 946 2.00x 10~
20 786 9.99 x 10715
25 978 140 x 1074
30 1017 166 x 1071

2 Not all of the multiple eigenvalues found.

The last row of Table | shows the number of matrix—vector product evaluations requ
by Algorithm 4.1 whenr =4 and random is set to false. These choicesafd random are
appropriate if we a priori know that there is a cluster of four eigenvalues that is well separ
from the fifth eigenvalue. Table | shows that 4 and randore-=false yields the fastest
convergence. This depends on that the matfiused in the restart after four eigenpairs
have been found, contains more useful information about the fifth desired eigenpair tr
random matrix. We note that Algorithm 4.1 was able to compute all the desired eigenf
for all choices of and random.

In ARPACK we set TOL= 1 x 10-%in order not to miss any of the multiple eigenvalues
Table 1l shows the number of matrix—vector products required by ARPACK and the larg
error in any one of the the computed eigenvalues. ARPACK failed to detect one of
multiple eigenvalues when the number of Lanczos vectors used was 15 and 20. We re
that a locking-and-purging strategy for ARPACK, suggested by Lehoucq and Sorensen
may enable this method to detect more multiple eigenvalues. However, this strategy i
implemented in the available code for ARPACK.

Table 11l shows the number of matrix—vector products required and the largest e
in any one of the eigenvalues that were computed by the subroutine DNLASO for bl
sizes 1= NBLOCK <5, and NFIG=10. For 1< NBLOCK < 3, we let MAXJ= 20, and
for NBLOCK equal to 4 or 5, we use MAX3 30. These values of MAXJ satisfy MAXJ
6 - NBLOCK, as required by DNLASO. The subroutine DNLASO failed to detect all tt
multiple eigenvalues for block sizes 1 and 3. In this example Algorithm 4.1 required
least computer storage and matrix-vector evaluations, and accurately determined all de
eigenpairs.

TABLE Il
Example 5.1: DNLASO

Block size  No. Lanczos vectors No. matrix—vector Maximum

NBLOCK MAXJ products error
1 20 1439 147 x 10°°
2 20 1509 7 x 10710
3 20 1910 7.49x 101
4 30 2069 161 x 1071
5 30 2630 55x 10712

2 Not all of the multiple eigenvalues found.
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We emphasize that the purpose of the computed examples of this section is to s
the performance of the algorithms when only few vectors can be stored in fast compt
memory. An increase im would reduce the matrix-vector products required to determin
the desired eigenpairs. Related computed examples can be found in [3].

ExampLE 5.2. This example is identical with Example 5.1, except for the selection ¢
shifts. In particular, we used the same matixinitial matrix V;, and value ok. Instead
of Leja shifts, we used the zeros of thth degree Chebyshev polynomials of the first kind
for the intervalsK =[a, b] generated by Algorithm 4.1 as shifts. Thus, for each interva
K =[a, b], we applied the shifts

b— 2j -1 b
Zj= Zacos< ]2m 7r>~|— —ga’ 1<j<m (5.1)

This choice of shifts is quite natural, because among all monic polynomials of degree
the monicmth degree Chebyshev polynomial is of smallest magnitud& oithus, the
polynomialymq in (2.9) is a product of Chebyshev polynomials of degrefor different
intervalsk. Table IV displays the results of the computations, and is analogous to Table
The results are typical for many numerical examples; Leja shifts yield faster converge
than Chebyshev shifts (5.1). This depends on that the Chebyshev shifts for a given inte
only depend on the endpoints of that interval, while Leja shifts also depend on the loca
of previously applied shifts.

ExamMPLE 5.3. LetA be the 900< 900 matrix obtained by discretizing the two-dimens-
ional negative Laplace operator on the unit square by the standard 5-point stencil
Dirichlet boundary conditions. We wish to determine the eigenpairs associated with
six smallest eigenvalues &. It is well known that the largest multiplicity of the desired
eigenvalues is 2. Specifically,

M<A=A3<M<As =A< ---;

see, e.g., [34, Section 8.4]. We choose block size2 and set random to false. Letting
m=>5 yields a subspace of dimensior = 10. Fore =1 x 107°. Algorithm 4.1 required
the evaluation of 232 matrix—vector products with the ma#iand gave a maximum error
over all computed eigenvalues aB2 x 107°.

TABLE IV
Example 5.2: IRBL Method with Zeros of Chebyshev Polynomials as Shifts

No. matrix—vector products

Block Consecutive No. Lanczos Maximum
sizer shiftsm vectorsmr A A2 A3 Ag As Total error
1 10 10 199 188 199 195 258 1039 .48x 1071
2 5 10 - 358 - 550 792 1700 .19x 10
3 5 15 - - 432 - 444 876 B4 x 10716
4 5 20 - - - 436 384 820 B5x 10715
5 4 20 - - - - 580 580 93 x 10716

4 5 20 randome=false in Alg. 4.1 484 22x 1076
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When using ARPACK to compute these eigenpairs, we had to set TOLxth0t?0,

a larger value of TOL resulted in ARPACK missing multiple eigenvalues. When allo
ing 10 Lanczos vectors, i.anr =10, ARPACK required the evaluation of 1329 matrix-
vector products with the matri, and the largest error in a computed eigenvalues w
9.37x 1072, Increasing the number of Lanczos vectors to 20 reduced the numbe
matrix—vector products required by ARPACK to 334 and gave a maximum error in

computed eigenvalues of88 x 10712,

An application of DNLASO with block size 2, MAX3 20, and NFIG= 10 required
the evaluation of 1094 matrix—vector products and gave a maximum error in the comp
eigenvalues of 11x 10~1°. Thus, Algorithm 4.1 required the fewest matrix—vector produ
evaluations withA, and the least computer storage.

ExampLE 5.4. LetA=diag(ai1, &, . - ., &00100) With entries
o 1x10-1 ifl<i <4,
I if5<i <100

We seek to compute tHesmallest eigenvalues and associated eigenvectorsfd 4 4
and use Algorithm 4.1 witin=5,r =4, e =1 x 1078, and random:=false. We wish to
illustrate the performance of the algorithm for different choices of the pararpéte(3.9)
and (3.10).

Table V displays the results achieved with Algorithm 4.1. The largest error in any
of the computed eigenvalues wa3 #x 10714, We allowed the evaluation of at most 500C
matrix—vector products with the matrik, and the computations were terminated when th
number was exceeded before the desk&igenpairs had been found. Table V illustrate
the effect of the choice op, i.e., the effect of the choice of left endpoint of the interva
K =[a, b]. If this endpoint is close to the desired eigenvalues, then we get poor or
convergence. Faster convergence is achieved when the left endpoint is moved away
the desired eigenvalues.

TABLE V
Example 5.4: IRBL Method; m=5,r=4

No. matrix—vector products

P k=1 k=2 k=3 k=4
0 900 760 620 560
1 680 640 580 600
2 600 540 540 500
4 540 500 480 440
6 460 460 480 420
8 440 420 400 340
10 400 340 340 360
11 340 340 360 340
12 340 360 340
13 360 340

14 340
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ARPACK required the evaluation of 570 matrix—vector products in order to find tt
smallest eigenvalue oA with a Krylov subspace of size 20 and T@L1 x 107, The
error in the computed eigenvalue wad3x 10~14. The computation of the four smallest
eigenvalues by ARPACK required the evaluation of 889 matrix—vector products, with
maximum error over the computed eigenvalues.8iX 1014,

When we tried to compute only the two smallest eigenvaluésasfd associated eigenvec-
tors with ARPACK, the scheme failed to converge. More precisely, settingF®k 10~’
and allowing a Krylov subspace with at most 20 Lanczos vectors and 180,020 matrix—ve
products with the matriXA gave no convergence to the desired eigenpairs. Increasing t
Krylov subspace to dimension 50 and allowing the evaluation of 480,050 matrix—vec
products still did not produce the desired eigenpairs. Our experience was similar wher
instead tried to determine the eigenpairs associated with the three smallest eigenvalue

DNLASO with NFIG= 10, MAXJ= 30, and NBLOCK= 4 determined the three small-
est eigenvalues using 3487 evaluations of matrix—vector productsAyitnd the com-
putation of the four smallest eigenvalues required the evaluation of 1304 matrix—vec
products. However, DNLASO was not able to compute only the smallest or only the t
smallest eigenvalues and associated eigenvectors before the computations were termi
because 16,000 matrix—vector products had been evaluated. Convergence could be act
by reducing NFIG, but then the computed eigenvalues were inaccurate.

The remaining examples of this section are concerned with liquid crystal modeling. !
used the valueg; = 555, L= 735, and L3 = ;3 for the elastic constants, amt=2 and
C:% for the bulk constants in (1.4); see [36] for a discussion on the determination &
relationship between these constants. We do not report details about the computati
work required; such details have been provided in the previous examples already. Inst

we focus on how Algorithm 4.1 can be applied in the context of liquid crystal modeling.

ExAaMmPLE 5.5. We track the equilibrium configuration of the liquid crystals in the two
dimensional slab

Q={(X,X2):0=<x<1,0<x <1}, (5.2)

which is discretized by a 44 41 grid. Discretization of the Euler-Lagrange equations b
finite differences on this grid, with the boundary condition determined by strong surface :
choring (1.6) withQo = 3vv™ — I, yields a matrixGo(Q, 7) of ordern =5 x 3% = 7605.
The initial tensoreQ = Q(p), p € L, are defined by (p) =3v(p)v(p)T — |, wherev(p)

is the unit vector directed toward the centeknf

We let the initial normalized temperatufe of the liquid crystals be/, =0.375 and
track the equilibrium configuration for decreasing temperature tinti 0.280. Figure 5.1
displays the smallest eigenvalue of the ma@ix(Q, 7)) and the minimum energy of the
liquid crystals versu§ . For temperatures larger thap3lthe model presented here is not
physically realistic as can be seen from the fact that the minimum energy of the systel
a decreasing function &f for 7 > 1/3; see Fig. 5.1b.

Four solution paths, path (1)—path (4), are determined. We followed path (1) to path
This was done with Algorithm 4.1 with input parameters:-1, e =1 x 10~°, m= 10,
andk =1. These parameter values are used during path following in Examples 5.7
5.8 as well. The initial temperature on path (1)Z$=0.375 and the final tempera-
ture on path (2) i/, =0.280. We found a singular poiriQg, 7o) for 7o =0.3012 with
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FIG. 5.1. Example5.5: two-dimensional slab with strong surface anchoring of the liquid crystals. (a) Smal
eigenvalue of the matrixGo(Q, 7) vs temperature . Paths (3) and (4) are represented by the same curv
(b) Minimum energy vs temperatufe. The model is unrealistic faf > 1/3.

Algorithm 1.1. A vector in the null space @q(Qo, 7o) is determined by Algorithm 4.1
simultaneously. We then used Algorithm 4.1 with input paramatets, e =1 x 10°°,
m=29, andk = 3 to compute the dimension and an orthonormal basis of the null space
Go(Qo, To). For these computations, we chose an initial matjx R™2 with random
orthonormal columns that, moreover, are orthogonal to the vector in the null space alr:
known. Null space computations with Algorithm 4.1 are carried out similarly in Examp
5.6-5.8. In the present example, we found the dimension of the null space to be one
null space is orthogonal t67(Qo, 7o) and, therefore, the singular point is a bifurcatior
point.

We followed the intersecting paths through the pdi@,, 7,), paths (3) and (4) in
Fig. 5.1, by taking a step in the tangent direction along each path. Note that path:
and (4) are represented by the same curve. This is a consequence of the symmetry
problem.

When traversing the intersecting curves, we passed another singular Qeijri;) for
7, =0.3232; see Fig. 5.1. We used Algorithm 4.1 to compute the null space of the me
Gq(Q1, 71). The null space is of dimension one, and it is not orthogon&+0Q+, 71).
Therefore the singular point is a limit point.

ExampLE 5.6. We track the equilibrium configuration of the liquid crystals in the twc
dimensional slab (5.2) and model weak surface anchoring of the liquid crystal molec
with W =10 in (1.5). We use a symmetric finite difference discretization of the Eule
Lagrange equations described in [2] on axd41 grid and obtain a symmetric matrix
Go(Q, T) of ordern =5 x 412 = 8405.

Let the initial temperature and tensors Qg and 7y of Example 5.5 and minimize the
free energy by using the Euler—Lagrange equations. The n@ieQo, 7o) So obtained
has three negative eigenvalues. We follow the largest negative eigenveabig(Ql, 7o)
with Algorithm 1.1 as we increasg&. This is the eigenvalue of smallest magnitude ¢
Go(Q, 7), and this eigenvalue vanishes at the singular pai@ts7) of this matrix. We
obtain the singular pointQ2, 72) for 7, =0.3013 and a vector in the null space of the
matrixGq(Q2, 7). Algorithm 4.1 withe = 1 x 10°, m=5,k=r =4, and randons= false
is applied to determine the entire null spaceézef(Q>, 72). It is found to be of dimension
one and is orthogonal 167 (Q>, 72). Therefore, the singular point is a bifurcation point.

Similarly as in Example 5.5, we tracked four different solution paths between the te
peratures/; = 0.37 and7, = 0.28. Figure 5.2 shows the largest negative eigenvalue of t
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FIG. 5.2. Example 5.6: two-dimensional slab with weak surface anchoring of the liquid crystals. The poir
in the graphs labeled (a)—(f) correspond to the images (a)—(f) in Fig. 5.3 (a) Eigenvalue of smallest magnituc
the matrixGq(Q, 7) vs temperatur€ . (b) Minimum energy vs temperatute.

matrix Go(Q, 7) and the minimum energy of the liquid crystals versus the temperatu
The model with weak surface anchoring of the liquid crystals displays physically reasone
behavior also foZ > 1/3.

Figures 5.3a—f display the orientation of the liquid crystal molecules in the slab (5.
Let A(p) be an eigenvalue of largest magnitude of the ter@@op), and letw(p) be an
associated normalized eigenvector. The figures show the direatpya (p) for p e Q.
The lengths of the lines in the figures are proportional to the length of the directors.
line indicates random orientation of the molecules. Areas with liquid crystal molecules
random directions are often referred to as the defect of the equilibrium configuration.

Figure 5.3a shows the directors at the bifurcation pointZfor 0.3013. Figures 5.3b—f
are obtained when following path (3) as indicated in Fig. 5.2a. The defect of the equilibrit
configuration splits and the two areas move towards the cornélsTfe images obtained
when following path (4) instead are the images for path (3) rotated 90

ExampPLE 5.7. The equilibrium configuration of the liquid crystals is tracked for the
three-dimensional slab (1.1) with=b =c = 1. We discretize the slab by finite differences
ona21x 21 x 21 grid. Strong surface anchoring (1.6) of the liquid crystals is imposed, al
we obtain a matrixGq(Q, 7) of ordern=>5 x 19° =34295. The initial tensors are given
by Q(p) =3v(p)v(p)" — I, p € 2, wherev(p) is the unit vector directed toward the center
of Q, analogously with Example 5.5.

The initial and final temperatures used wgge= 0.1 and7, = 0.0, respectively. Figure 5.4
shows the smallest eigenvalue of the matéiy(Q, 7) and the minimum energy of the
liquid crystals versus the temperature. We followed 16 solution paths, but Fig. 5.4a o
shows five distinct paths. This is due to the symmetry of the problem.

We first followed path (1) starting witl; =0.1 to path (2) ending witlZ, =0.0. A
singular point(Qs, 73) was found on the path for & =0.0344; see Fig. 5.4a. Using
Algorithm 4.1, we found that the dimension of the null spaceGef(Qs, 73) is three,
as well as an orthonormal basis of the null space. Since the null space is orthogon:
G7(Qs, 73), the singular point is a bifurcation point.

We followed the intersecting curves, paths (3-16) in Fig. 5.4a, by taking a step in
tangent directions along these curves. No other singular points were found along tf
curves for temperatures betwe&n= 0.1 and7, =0.0.

Figure 5.4b displays the minimum energy for the different paths. The graph shows tl
starting from the bifurcation point, the minimum energy increases as we follow the pa
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FIG. 5.3. Example 5.6: images of the equilibrium configurations of the liquid crystals for several tempe

0.3174.
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FIG. 5.4. Example 5.7: three-dimensional example with strong surface anchoring of the liquid cryst

(a) Smallest eigenvalue of the matg(Q, 7) vs temperatur€ . (b) Minimum energy vs temperatufe.
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TABLE VI
Example 5.7: Symmetry Properties and Equivalence
Classes for the Different Paths in Fig. 5.4a

Symmetry of the field
of theQ tensors )
Equivalence
Path X1 Xo X1 X3 XoX3 classes

1 v v v path 1

2 v V v path 2

3 \/ \/ \/ path 3

4 v paths 4,5, 6

5 \/ paths 4,5, 6

6 \/ paths 4,5, 6

7 Vv patrs 7 - 12

8 v paths 7 — 12

9 v patrs 7 — 12
10 v patrs 7 - 12
11 v paths 7 — 12
12 v paths 7 — 12
13 v v v path 13
14 \/ paths 14, 15, 16
15 paths 14, 15, 16
16 v paths 14, 15, 16

(1,7-16) and the temperature increases. When we follow the paths (2—6) the minin
energy decreases as temperature decreases.

This three-dimensional problem illustrates symmetric properties of the figdensors
on different solution paths; see Table VI. The solution paths belong to equivalence clas
For example, the paths (4,5,6) are in the same equivalence class because these path:
the same smallest eigenvalue graph; see Fig. 5.4a. These paths yield the same(Jield
tensors up to arelabeling of the coordinate axes. The different equivalence classes are s
in the last column of Table VI.

ExamPLE 5.8. The slab and boundary conditions for this example are the same
for Example 5.7, but we discretize the Euler-Lagrange equations on a finer mesh;
slab is discretized by a 4141 x 41 grid and this yields a matriGq(Q, 7) of order
n=5 x 39°=296,595. We started with the same initial temperature and tensor field as
Example 5.7 and found a singular poii@,, 74) for 7 =0.0356 and a vector in the null
space oG o(Qa, 74). We applied Algorithm 4.1 to determine an orthonormal basis of th
null space ofGq(Qa4, 74) and its dimension. The latter is three. Since the null space
orthogonal taG7(Q4, 74), the singular point is a bifurcation point.

6. CONCLUSION AND EXTENSION

The paper describes a new algorithm for computing multiple or very close eigenvall
of a large sparse symmetric matrix. A comparison shows Algorithm 4.1 to be competit
with the subroutine DNLASO in the LASO2 package and with ARPACK. In particulal
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Algorithm 4.1 has been used successfully to determine the smallest eigenvalues and a
ated eigenvectors of large and sparse Jacobian matrices that arise in liquid crystal mod
The low storage requirement of Algorithm 4.1 is essential for this application due to
large size of the Jacobian matrices.

Algorithm 4.1 is designed for the computation of eigenpairs associated with the sma

eigenvalues of a matri. The algorithm can be used to compute the largest eigenvall

of

A by applying it to the matrix- A. A restarted Lanczos method for computing a fev

nonextreme eigenvalues of a large sparse matrix has been described in [3], and it v
appear possible to modify the IRBL method of the present paper so that it can be us
compute a few nonextreme eigenvalues as well.
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